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Type-Logical HPSG
Carl Pollard

8.1 Introduction

Pullum and Scholz (2001) bifurcate 20th-century syntactic research
frameworks into two principal paradigms:model-theoretic syntax (MTS,
e.g. arc pair grammar, construction grammar, and HPSG) and genera-
tive-enumerative syntax (GES, e.g. transformational grammar and cat-
egorial grammar, including type-logical grammar (TLG)). Pullum and
Scholz argue on empirical grounds for the superiority of MTS over
GES. Although I think their arguments are vulnerable to criticism on
a number of counts, my purpose here is not to criticize MTS but rather
to argue that one need not choose between MTS and GES. More pre-
cisely, I propose a framework, higher-order grammar (hereafter HOG)
which at once embodies both model-theoretic and proof-theoretic as-
pects. To put it another way, HOG is in the intersection of the MTS
and GES paradigms; its MTS and GES aspects are not in competition,
but rather complementary.

The comparison between TLG (Morrill, 1994, Moortgat, 1997) and
HPSG (Pollard and Sag, 1994) is of particular interest because, among
all the widely employed syntactic frameworks, they have been espe-
cially committed to explicit formalization of linguistic theory within
logic. Given this shared concern with formal precision (to say noth-
ing of other commonalities such as lexicocentrism and concern with
computational tractability), one might well wonder why the research
communities associated with these two frameworks have not merged
into a single community. The principal scientific reason for the separa-
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tion is that the logical foundations of the two frameworks are seemingly
incompatible.

Leaving aside for the moment semantic interpretation, in TLG words
(thought of as prosodic/phonological entities) are assigned to types—
formulas in a resource-sensitive logic (usually an elaboration of Lam-
bek’s 1958, 1961 syntactic calculus) and then the assignment is ex-
tended to word strings by well-known proof-theoretic means. In HPSG,
by contrast, one starts with a set of “candidate” structures (in the
terminology of Carpenter (1992), the totally well-typed, sort-resolved,
inequation-resolved feature structures over a given signature of sorts
and features), and then discards the ones that fail to satisfy the gram-
mar, a set of axioms (grammatical constraints) written in a (quite id-
iosyncratic) classical propositional logic, viz. RSRL (Richter, 2000).
TLG, then, is a GES framework because the derivations are (at least)
recursively enumerable, whereas HPSG is a MTS framework because
the well-formed structures are models of the logical theory axiomatized
by the constraints. It would appear, then, that the logics underlying the
two frameworks bear no interesting relationship. But as will be shown
presently, linguistic type logics and linguistic constraint logics can be
seen to be intimately related, if viewed from a higher-order perspective.

HOG is an outgrowth of research over the past several years aimed
at solving some of HPSG’s foundational problems, which mostly arise
from the absence of functional types. Once we opt for a classical logic
with functional types for expressing linguistic constraints, some form
or other of higher-order logic (HOL) naturally suggests itself. In fact,
the use HOL for linguistic description has been advocated by others
(e.g., Moshier, 1999, Ranta, In press, Penn and Hoetmer, 2003). The
present proposal, however, is unique in two respects. First, HOG em-
ploys a single HOL for all three of syntax, semantics, and phonology (as
well as the syntax-semantics and syntax-phonology interfaces). Corre-
spondingly, as in HPSG, syntactic, semantic, and phonological entities
inhabit a model of a grammar. And second, HOG exploits the for-
mal parallel between, on the one hand, the cartesian type constructors
(product (×) and exponential (⇒)) of the typed lambda calculus that
underly HOL and, on the other hand, the tensor type constructors (ten-
sor product and directional slashes) of the Lambek calculus, thereby
enabling analogs of linguistic analyses originating within TLG to be
developed in an MTS setting. (A third difference, namely that HOG is
categorical in the sense that the types and entities of a given natural
language are construed, respectively, as objects and arrows of a cate-
gory, with phonological and semantic intepretation as endofunctors, is
discussed in (Pollard, 2004).)
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8.2 HOG and HPSG

To clarify the connection with HPSG, a HOG can be characterized
roughly as follows. (1) The grammar is is written in a classical HOL
rather than in RSRL. Thus HOG is free of the idiosyncrasies of RSRL
such as chains (Richter, 2000) and the concomitant undecidability of fi-
nite model-checking (Kepser, 2001). (2) The types of the HOL replace
HPSG’s features structure types. More specifically, feature structure
types become indexed product types (Barr and Wells, 1999) HPSG
partitions of a type are expressed as coproducts (model-theoretically,
disjoint unions), and types set-of[A] are realized as functional types
A⇒ Bool. (3) A sign is modelled not by a feature structure but rather
by the denotation (in a model of the grammar) of a closed term. (4)
Unlike HPSG, HOG does not have a type Sign; instead signs are of
many types (namely the ones where the interpretive endofunctors are
defined). (5) “Unsaturated” signs (in HPSG terms, signs with non-null
valence features) have functional types. Hence there are no valence
features, so the perennial problem of how to instantiate undischarged
valence features (e.g. the subject of the infinitive in to err is human) to
satisfy total well-typedness does not arise. (6) Semantic interpretation,
treated in HPSG as just another feature (content) of signs, is treated
in HOG as a (schematic polymorphic) function from signs to seman-
tic entities, that is, a type-indexed family of functions each of whose
domains is one of the sign types. Since the HOL is already a lambda
calculus, there is no need to encode Ty2 terms as features structures
or lambda conversion as an RSRL relation (Richter and Sailer, 2003).
(7) Analogously, phonological interpretation, also treated in HPSG as
a feature (phonology) of signs, is a (schematic polymorphic) function
from signs to phonological entities. Constraints on phonological entities
(e.g. phonotactic constraints) can then be expressed directly as nonlog-
ical axioms of the grammar. (8) Since there is just equality simpliciter
rather than a distinction between type identity and token identity, the
framework is free of Höhle’s Problem (that a sentence containing two
occurrences of the same sign is spuriously ambiguous as to whether the
occurrences are type-identical or merely token identical). Some of these
these points will be elaborated below; others are discussed elsewhere
(as specified).

8.3 HOG resolves the MTS-GES dichotomy

The HOG architecture provides insight into the relationship between
TLG’s type logic and HPSG’s constraint logic, since it has analogs of
both. The HOG analog of TLG’s type logic is just the HOL’s type
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system, which, as for any typed lambda calculus ((Curry and Feys,
1958, Howard, 1980) forms an intuitionistic propositional logic with
the type constructors as the logical connectives (though not a resource-
sensitive one as in TLG). And the HOG analog of HPSG’s constraint
logic (RSRL) is just the higher-order logic of terms: both are quantifi-
cational logics with all the familiar boolean connectives, and both are
used to impose well-formedness constraints on linguistic entities. TLG,
however, lacks an analogue of the constraint logic. In HPSG, on the
other hand, what is missing is the type logic. But in HOG there is both
a type logic and a constraint logic, and the latter is the proof term cal-
culus of the former. Thus any grammar will be a theory written in the
HOL of choice, and in a model of that theory, any entity of a given type
will satisfy all the constraints that the grammar imposes on entities of
that type. In this respect HOG is an MTS framework (like HPSG). But
at the same time, any one of the family of equivalent terms denoting
that entity encodes (as per Curry-Howard) a natural-deduction proof
of its type. So as long as grammars are written in such a way to ensure
that the set of signs of type S (which is in one-to-one correspondence
with the set of normalized proofs of type S) is recursively enumerable,
HOG is also a GES framework.

8.4 The Logic

HOL (with two types, here called Bool (truth values) and Ent (entities),
and the single type constructor ⇒), was first placed on a firm foot-
ing in the form of Church’s 1940 simple theory of types (STT), which
moved the term equivalence of the simply-typed lambda calculus into
the object language and added constants to serve as logical connectives
and quantifiers. Henkin (1950) reaxiomatized STT, added the axiom
of propositional extensionality, and proved completeness with respect
to the class of models which now bear his name, viz. general Henkin
models (here ‘general’ means that there need only be enough functions
to interpret all closed functional terms). Gallin (1975) showed that Ty2
(obtained by adding a type World to Henkin’s HOL) was equivalent in
a clearly defined sense to Montague’s intensional logic IL (equipped
with a suitable proof theory).

As pleasant to work with (and familiar to linguists) as Ty2 is, it
is somewhat too blunt an instrument to serve as a general linguistic
formalism, even with the addition of arbitrarily many basic types. Ex-
perimentation over the past several years points to the need for the
following features absent in Ty2:
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Indexed Products. The (cartesian) product type constructor ×
(conjunction, in terms of the type logic), together with corresponding
projection terms and pairing term constructor, is a standard feature of
many HOLs and functional programming languges. This makes curry-
ing of functions an option rather than a necessity. Even better is the
addition of indexed products, which allow the factors in product types
to be indexed by arbitrary sets of labels (feature names) rather than
just by natural numbers (so that the indexed projection functions are
the features). Indexed products are a more standard way of doing what
linguists do with feature structures.

Coproducts. The (cartesian) coproduct type constructor + (disjunc-
tion in the type logic, with corresponding injection functions and co-
pairing term constructor) is interpreted as disjoint union in the models
and is therefore ideally suited for partitioning types, as in HPSG type
hierarchies.

The addition of product and coproduct (including nullary 1 and 0
respectively) to the original exponential (⇒) constructor makes the
type logic into a full intutionistic propositional logic.

Separation types. Separation types (so-called by analogy with the
set-theoretic axiom of separation), are subtypes defined by restricting
a given type by an open boolean term, e.g. given S as a primitive type,
we can define the subtype of finite sentences as the separation type

Sfin =def [x ∈ S| Vform(x) = fin]

The (separation) subtypes of any given type should form a boolean
algebra. For example, to implement the now-standard analysis of case
syncretism (Bayer and Johnson, 1995), given types NPacc and NPgen,
we would like to define the type of syncretic accusative-genitive noun
phrases as

NPnom acc =def [x ∈ NP | Case(x) = nom acc] = NPnom ∩ NPacc

Natural Number Type. Incorporation of a natural number type
Nat is another standard feature, which in effect builds an analog of
the set-theoretic axiom of infinity into the logic and, inter alia, makes
the Kleene-* (string) type constructor definable. That is, for each type
A there is a type A∗ with the expected behavior of strings (see (Pol-
lard and Hana, 2003) for linguistic motivation and application to the
analysis of coordination).

Schematic polymorphism. From its inception HPSG has employed,
at least informally, some notion of parametric polymorphism (e.g. for
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sets or lists all of whose members are to be of the same type A). In
HOG we already have strings (A∗) and sets (A ⇒ Bool), but there
is still a need for limited polymorphism, e.g to define the semantic
and phonological interpretation functions across the kind of sign types.
Experience thus far suggests that schematic (or abbreviatory) polymor-
phism is sufficient; that is, no new types (or quantification over types)
are introduced, but a family of functions can be defined schematically
across a family of types (here, the sign types).

The higher-order categorical logic of Lambek and Scott (1986) pro-
vides a good point of departure for satisfying the foregoing desider-
ata: it has products, (definable) coproducts, natural number type, and
(separation) subtypes. Moreover the subtypes of a given type form a
Heyting algebra, which becomes boolean once the boolean axiom is im-
posed. This is still a bit too general, because the type of truth values
(usually called Ω) can be an arbitrary Boolean algebra (so there can
be truth values other than true and false); so in order to get bivalence
it is also necessary to impose the type identity Ω = 1 + 1, with Ω
being the truth value type and true and false being the canonical in-
jections. (This then justifies the renaming of Ω to Bool.) The models
of the resulting logic are categories (abstract mathematical universes)
called bivalent boolean toposes abstract models of typed lambda calcu-
lus with enough additional structure to interpret a propositional type
and associated logical constants. Henkin models (when so augmented)
are special cases of these. (Readers unfamiliar with category theory
can just think of Henkin models augmented with cartesian products
and lambda-definable subtypes without being led seriously astray.)

8.5 Syntax

A higher-order grammar is given by specifying three things: (1) the
basic types; (2) the basic nonlogical constants (including their types);
and (3) the constraints (nonlogical axioms).

Basic types. For purposes of discussion we present a HOG for a
simple fragment of English (with noun and verb as the only parts of
speech), starting with the following basic types: Phon (phonemes); S
(sentences); NP (noun phrases, for the moment limited to nonquantifi-
cational ones); N (common noun(phrase)s, setting aside the the ques-
tion of whether N should be analyzed as the head of NP); Prop (propo-
sitions, the semantic interpretations of declarative sentences); Ind (in-
dividual concepts, the semantic interpretations of noun phrases); and
Ent (entities, the kinds of things that can be the extensions of individ-
ual concepts). (Note that the type Bool of truth values, the extensions
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of propositions, is already supplied by the logic.) For notational conve-
nience we also provide types for the values of what are treated in HPSG
as nonboolean head features in HPSG, such as Vform (verb inflected
form), Case (case), and Agr (noun agreement).

Basic constants. Next, we add the basic nonlogical constants. For
example, to say that nom is a case value we include in the grammar
the basic constant nom : 1→ Case, which for familiarity we write as

nom ∈ Case

This means that in a model, nom is interpreted as a member of the
set that interprets the type symbol Case (more precisely, as a function
whose codomain is that set and whose domain is the singleton set {0}).

Next we add functions which play the same role in HOG that head
features play in HPSG, e.g.

Case ∈ (NP⇒ Case)
Agr ∈ (NP⇒ Agr)
Vform ∈ (S⇒ Vform)
Aux ∈ (S⇒ Bool)
Inv ∈ (S⇒ Bool)

We turn next to the specification of the lexicon. For example, to in-
clude the word she as a nominative third-singular-feminine nominative
noun, we add the specification

she ∈ NPnom/3fs
where the target type is defined as follows:
NPnom/3fs =def [x ∈ NP | Case(x) = nom ∧ Agr(x) = 3fs]

Note that the definition does not bring the defined type into exis-
tence! Its existence is a consequence of the existence of the basic type
NP, together with the subtyping provided by the logic; the definition
merely provides a handy abbreviation. It is important to be aware that
the entity that interprets the constant she is to be thought of as mod-
elling the word she qua syntactic entity; it is not a phonological entity.
(So far we have said nothing about what the syntactic word she sounds
like). The view of signs (syntactic words and phrases) as inhabitants of
syntactic types originates with Lambek’s 1988, 1999 categorical view of
his own syntactic calculus. The principal difference between Lambek’s
approach and the one advocated here is that they employ different type
logics: Lambek calculus vs. intuitionistic propositional logic.

Next we add a couple of finite third-singular verbs to the lexicon
(the definitions of the various subtypes of S and NP employed should
be obvious):

swims ∈ VP3s/main =def (NPnom/3s⇒ Sfin/main)
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sees ∈ TVP3s/main =def (NP⇒ (NPnom/3s⇒ Sfin/main))

These lexical items parallel lexical type assignments in TLG, but
there are (at least) three important differences. First, the product and
exponential type constructors involved are cartesian, not tensor. Sec-
ond, there is no mention of phonology (no pairing of word strings
with types). And third, words (and phrases) actually inhabit their
types, rather than just being assigned to them. In the model, this
means that, e.g., the word swims (i.e. the interpretation of the constant
swims) is a member of the set of third-singular main (i.e. nonauxiliary)
verb(phrase)s; in Curry-Howard terms, it means that swims encodes a
(one-line) derivation (proof) of the formula VP3s/main.

Note that the lexical entry for sees above assigns it a curried type.
But we could just as well have given the lexical entry as

sees† ∈ ((NP ×NPnom/3s)⇒ Sfin/main)

where the antecedent type is now suggestive of an HPSG Subcat
list. In fact, because of the adjoint relationship between× and⇒, either
lexical entry implies the existence of the other:

sees† = uncurry(sees)
sees = curry(sees†);
thus whether lexical entries are curried or uncurried is strictly a

matter of convenience.
In HPSG (as in relational grammar and lexical-functional grammar),

grammatical functions (such as subject and complement) are taken as
theoretical primitives rather than defined (as has usually been done
in categorial grammar) in terms of order of functional application. In
HOG, primitive grammatical functions are naturally implemented as
contrafeatures, i.e. indices of indexed product types that occur as the
antecedent in an implicative type:

TVP3s/main =def ((Comp : NP,Subj : NPnom/3s)⇒ Sfin/main)

This development is discussed further in the full paper; for now we
just mention that by using natural generalizations of currying and ap-
plication to the case of indexed products, it is easy to show that the
analogs of standard HPSG constraints (specifically the Head Feature
Principle and the Valence Principle) are just instances of modus po-
nens with respect to the type logic. Suitably refined, this technique
is also applicable to constructors corresponding to HPSG features for
handling various types of unbounded dependencies such as Slash (for
“wh-movement” gaps, including parasitic gaps), Rel (for pied-piped
relative pronouns), and Qstore (for unscoped quantificational NPs),
etc.
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To illustrate, a simple example is provided of how phrasal signs come
about (ignoring morphosyntactic features in order to simplify the ex-
position). Assuming we are given the three lexical entries kim ∈ NP,
sandy ∈ NP, and sees ∈ TVP, we can form the term sees(sandy)(kim) ∈
S by successive functional application. In a model, this term denotes a
certain sentence (i.e. member of the set that interprets the type S). This
sentence will be mapped by the semantic interpretation functor to a cer-
tain proposition (member of the set that interprets the type Prop), and
by the phonological interpretation functor to a certain string of phono-
logical words (member of the set that interprets the type Phoneme∗∗).
In terms of the type logic, this term corresponds to a certain intuition-
istic proof that uses modus ponens twice to prove the atomic formula S
from the premises NP, NP, and NP⇒ (NP⇒ S). Thus the relationship
between the derivation of the sentence and the sentence itself is that,
literally, the latter is the model-theoretic interpretation of the former.
Thus, in the HOG setting, the Curry-Howard isomorphism resolves the
distinction between type-logical and constraint-based grammar.

Syntactic constraints (nonlogical axioms). As noted above, some
well-established HPSG constraints, such as the Head Feature Principle
and the Valence Principle, whose essential purpose is to simulate func-
tional application, come for free. Others, such as the constraints that
govern the “discharge” of Nonlocal features, can presumably be ab-
sorbed into the general machinery for handling the corresponding type
constructors (as is done in TLG), but others may have to be stated as
nonlogical axioms, e.g. the English constraints on nested dependencies,
which differ from (say) the Swedish ones; constraints on the distri-
bution of parasitic gaps; the constraint that Que-binding is possible
at infinite VP or finite S but nowhere else; the pan-Germanic (but not
pan-Slavic) constraint that Slash-binders (or Vorfeld occupants) must
be “constituents” (i.e. cannot be of cartesian product types).

One type of syntactic constraint that is straightforwardly dealt with
in HOG is feature co-occurrence restrictions. For example the contraint
that in English inverted sentences must be headed by a finite auxiliary
can be expresseed as a nonlogical axiom:

∀x(Inv(x)⇒ (Aux(x) ∧Vform(x) = fin))

where x is a variable of type S. To take another example, consider
the hypothesis that, in Polish, nominative and accusative case never
syncretize. This can be expressed by the nonlogical axiom

¬∃x(x = x)

where x is a variable of type NPnom acc.
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8.6 Semantics

The HOG approach to semantic interpretation follows up a sugges-
tion due to (Montague, 1974, 263). Recall that in PTQ, translation
is treated as a relation between English expressions (in the sense of
strings of basic expressions) and terms of Montague’s intensional logic
IL. Montague’s suggestion is to revise the grammar architecture so
translation becomes a function from derivations (PTQ analysis trees)
to IL terms. But our sign-denoting terms can be thought of as encoding
proofs, which are analogous to PTQ-style analysis trees; so we imple-
ment Montague’s suggestion by treating semantic interpretation as a
translation from syntactic terms to semantic terms. Following Lam-
bek and Scott (1986), here translation means that: (1) each sign type
translates to a semantic type; (2) cartesian products translate to carte-
sian products; (3) basic terms of a given sign type translate to closed
terms of the corresponding semantic type; (4) the translation extends
uniquely to all terms by translating lambda abstraction to lambda ab-
straction, application to application, and pairing to pairing. In short,
translation preserves all lambda-calculus constructs. Additionally, se-
mantic interpretation is required to be a logical translation (i.e. to
preserve all logical constants). This is a very strong hypothesis about
the nature of the syntax-semantics interface, and one that is not easily
expressible in HPSG.

The details of the semantic translation are discussed elsewhere. For
now we just note that the proposed semantics is hyperintensional in
the sense of being finer-grained than the usual intensional semantics;
i.e. two signs can have interpretations whose denotations coincide in
every world, yet are distinct. The trick is to take propositions as prim-
itive, and entailment as (an appropriately axiomatized) preorder on
propositions (i.e. a constant of type (Prop× Prop) ⇒ Bool) and then
use subtyping to define the type of worlds as the type of all subsets of
the set of propositions which are ultrafilters (maximal consistent sets)
relative to the entailment preorder. The hyperintensionality is a con-
sequence of the fact that entailment is only a preorder, not an order
(so e.g. two distinct propositions can entail each other). See (Pollard,
in preparation) for details.

The upshot is that semantic interpretation is a (schematic polymor-
phic) function semA whose domain is the sign types, with NP and S
mapping to Ind and Prop (propositions) respectively. The semantic
types for the translations of signs belonging to nonbasic sign types is
then determined by the requirement that semantic interpretation be a
logical translation (as described above). The semantic interpretations
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of lexical signs are assigned by constraints such as:

sem(kim) = kim′

sem(sandy) = sandy’
sem(sees) = see’

which in concert with the logical translation condition, uniquely de-
termines semantic interpretation for all signs. For example:

sem(sees(sandy)(kim)) = (sem(sees))(sem(sandy))(sem(kim)) =
= see’(sandy’)(kim’)

8.7 Phonology

HOG phonology can be summarized in one sentence: phonological in-
terpretation, like semantic interpretation, is a logical translation. This
entails, inter alia, the following things: (1) It is impossible to tell by
looking at (the term denoting) a sign what it sounds like. (2) Phonolog-
ical entities are in the model and denoted by lambda terms. (3) Phono-
logical interpretation is a translation from terms that denote signs to
terms that denote phonological entities. (4) Such a translation is speci-
fied by defining it on lexical signs; the extension to phrases is uniquely
determined by the requirment that phonological interpretation be a
logical translation. (5) The HOL can be used to express phonotactic
constraints.

This may sound like a radical program for phonology, but a good
deal of it is historically grounded. The first point is closely connected
with Curry’s 1961 version of type-logical syntax, which insisted on a
clean separation between abstract syntactic combinatorics (in Curry’s
term, tectogrammar), and the concrete realizations of syntactic entities
(phenogrammar); in fact, Curry faulted Lambek’s calculus for failing to
maintain this distinction. The second point is prefigured in categorial
phonology (Wheeler, 1981). The third point has a precursor in (Oehrle,
1994) (however, Oehrle’s language of phonological terms did not form
a logic).

The following sketch of HOG phonology is necessarily simplified and
limited to segmental phonology. Our point of departure is the basic
type Phoneme, so that phonological words have type Phonword =def

Phoneme∗ and the phonological interpretations of syntactically satu-
rated signs are strings of phonological words (type Phonword∗). Phono-
logical features for phonemes can be handled formally on a par with
head features for saturated signs, and natural classes can be defined
as subtypes of the type Phoneme. Phonotactic constraints can be ex-
pressed as nonlogical axioms, but first the phonological ontology has to
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be enriched to include the kinds of entities to be constrained (e.g. syl-
lables).

As with semantic interpretation, the value of the phonological inter-
pretation functor phon on signs is uniquely determined by the values
on the lexical signs (which are specified by grammatical constraints) in
concert with the condition that phonological interpretation be a logical
translation. As noted above, for the saturated sign types NP and S, the
corresponding phonological type is Phonword∗, and so, for example, the
phonological interpretation of a sign of type VP =def (NP⇒ S) (dis-
regarding coordinate structures) is of type Phonword∗ ⇒ Phonword∗,
and the phonological interpretation of a sign of type TVP is of type
Phonword∗ ⇒ (Phonword∗ ⇒ Phonword∗).

A few examples should suffice to make this concrete. To enhance
readability, we omit the type subscript on polymophically typed con-
stants. Additionally, we employ the standard notational abuse whereby
what should denote a phonological word actually denotes a string of
phonological words of length one, e.g. /kIm/ instead of 〈/kIm/〉; in fact,
we compound the abuse by writing, e.g. /siz, kIm/ instead of 〈/siz/,
/kIm/〉. Also, eA denotes the null A-string and ∧

A denotes the polymor-
phically typed concatenation operator

∧
A ∈ (A∗ ⇒ (A∗ ⇒ A∗))

These are subject to the following (type-schematized) monoid con-
straints (with the variables all of type A):

∀x(e∧x = x)
∀x(x∧e = x)
∀x, y, z((x∧y)∧z = x∧(y∧z))

Note that these are nonlogical axioms of the grammar, not a met-
alinguistically imposed term equivalence as in (Oehrle, 1994).

Phonological interpretations are assigned to lexical signs by nonlog-
ical axioms such as the following:

phon(kim) = /kIm/
phon(sandy) = /sændi/
phon(sees) = λxλy.y∧/siz/∧x

Just as with semantic interpretation, phonological interpretation of
nonlexical signs is uniquely determined by logical functoriality. For ex-
ample:

phon(sees(sandy)(kim)) = (phon(sees))(phon(sandy))(phon(kim)) =
(λxλy.y∧/siz/∧x)(/sændi/)(/kIm/) = /kIm, siz, sændi/

Note that the lexical entry for sees ensures that the first and second
syntactic arguments (object and subject respectively) are phonologi-
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cally realized to the right and to the left of /siz/. This is why there is
no need to split the ⇒ constructor into \ and /: the directionality of
combination is moved out of the syntax and into the phonology (and its
interface with syntax). More generally, the resource sensitivity of lan-
guage is relocated from syntax (where TLG has it) into the phonology;
thus the syntactic type logic is not a Lambek calculus but just an or-
dinary intuitionistic propositional logic with all three of the structural
rules (contraction, interchange, and weakening).

This point is perhaps best conveyed in an intuitive, nontechnical way
as follows: in TLG, the syntax has to keep track of word order and word
occurrences, hence the need for a directional and linear syntactic type
theory. But in HOG, the syntax is freed of this responsibility, because
every time a syntactic word is used in a derivation, an occurrence of its
phonological interpretation shows up, appropriately linearized, in the
string of phonological words. Adapting the sort of economic metaphor
favored by linear logicians: logical constants come for free, but every
time you use a nonlogical constant in a syntactic proof, you have to
pay for it with a spoken word (by saying its name out loud).

As is well known (Zaenen and Karttunen, 1984, Sag et al., 1985, Pul-
lum and Zwicky, 1986) any syntactic theory must distinguish between
ambiguity (two or more signs with the same phonology) and something
else variously known as neutrality, nondistinctiveness, syncretism, in-
determinacy, or underspecification. Here we sketch the HOG treatment
of this distinction, starting with ambiguity. In the simplest case (so-
called argument ambiguity), we have two distinct words with the same
phonological interpretation, e.g., bank ‘riverside’ and bank ‘financial
institution’:

bank1 ∈ N
bank2 ∈ N

General properties of the cartesian product (and the associated pro-
jection terms and pairing term constructor) ensure that the presence
of these two lexical entries is equivalent to the presence of the single
conjunctive specification

(bank1, bank2) ∈ N×N

Of more interest is so-called functor ambiguity, where the two signs
in question both have implicative types with the same consequent,
e.g. main verb can and modal can:

a. I can tuna.
b. I can get a better job if I want to.
c.*I can tuna and get a better job if I want to.
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In this case the pair of ambiguous words has type (ignoring mor-
phosyntactic features)

(NP⇒ VP)× (VP⇒ VP)

which, by the intuitionistically valid law of disjunctive syllogism and
its converse, is equivalent (in the sense that the functions denoted by
the proofs in both directions are each other’s inverses) to the type

(NP + VP)⇒ VP

Intuitively, since + (cartesian coproduct) is disjunction in the type
logic, this says that can can take as its complement something which is
either an NP or a VP (but not, as will be shown below, a coordination
of an NP and a VP, which is neither). Formally, this treatment paral-
lels the standard TLG treatment of ambiguity in Morrill (1990), which
also employs cartesian coproduct (written ∨ in the Lambek calculus
setting, where in terms of the type logic it is linear additive disjunc-
tion, in spite of being incorrectly characterized as boolean in most of
the relevant TLG literature). Unfortunately, the standard TLG treat-
ment of coordination (Morrill, 1990, Bayer and Johnson, 1995, Bayer,
1996, hereafter MBJ), which builds on Steedman’s polymorphic typing
of coordinate conjunctions as A\A/A, wrongly generates such ungram-
matical examples side by side with grammatical examples such as

John is rich and an excellent cook.

because coordinate structures are analyzed as having disjunctive
types (here AP ∨ NP, with the neutral functor is receiving the lexi-
cal type assignment VP/(AP ∨ NP)). Thus the TLG account fails to
distinguish functor ambiguity from functor neutrality. To take another
example, the MBJ account predicts both of the following to be gram-
matical:

a. *Mary wants to go and John to go.
b. I would like to leave town early and for you to go with me.

As pointed out by Whitman (2002), the MBJ account also fails
to distinguish between argument ambiguity and argument neutrality
(which includes case syncretism as a special case), so that all instances
of homophony between slots in the inflectional paradigm of a word are
wrongly predicted to syncretize (see Dyla (1984) for relevant counterex-
amples). Moreover, the MBJ account is inconsistent with the standard
TLG frame-semantics approach to phonological interpretation (Heylen,
1996, 1997, Moortgat, 1997, Carpenter, 1998). On that account, if S is
the stringset that phonologically interprets AP and T is the stringset
that phonologically interprets NP, then rich and an excellent cook
should be in their union; hence it must lie in either S or in T ; but



Type-Logical HPSG / 125

it does not. Faced with these difficulties, Whitman suggests abandon-
ing the syntactic distinction between ambiguity and neutrality (so that
in principle neutralization is always an option, subject only to prag-
matic factors). Alternatively, Morrill (p.c.) suggests the possibility of
distinct phonological entities with no audible difference (more precisely,
a phonological entity is not just a string, but rather an ordered pair of
a string and an integer).

Some of the problems discussed above have also been addressed
within recent HPSG literature, most recently by Sag (2003), which
proposes a relaxation of the requirement that feature structures be
sort-resolved. In the absence of a precise formalization, this proposal is
hard to assess. (Note that the model theory of RSRL precludes any en-
tities which belong to a sort without belonging to one of its maximally
specific subsorts.)

Pollard and Hana (2003) propose the following HOG analysis of neu-
trality and coordination of unlikes. First, the treatment of syncretism
(say, for a language with nominative and accusative case) follows Levine
et al. (2001) in employing a nonstandard inventory of Case values:
pnom (pure nominative), pacc (pure accusative), and nom acc (syn-
cretic between nominative and accusative). Then NPnom and NPacc
are defined as subtypes of NP as follows:

NPnom =def [x ∈ NP | Case(x) = pnom ∨ Case(x) = nom acc]
NPacc =def [x ∈ NP | Case(x) = pacc ∨ Case(x) = nom acc]

Also we define

NPnom acc =def [x ∈ N | Case(x) = nom acc] = NPnom∩NPacc
That is, case syncretism is handled not by the type logic’s conjunc-

tion (cartesian product, which is appropriate only for non-neutralizing
ambiguity) but rather by the (genuinely boolean) intersection of sepa-
ration subtypes.

Pollard and Hana’s analysis of coordination employs a schematic
polymorphic type GEN[A] where A can be instantiated as any type of
kind Sign. That is, for each sign type A, there is a type GEN[A] of
“generalized A”, where a generalized A is a sign that is either an A or
a coordinate structure whose conjuncts are generalized A′s. To ensure
that, for each sign type A, A is actually a subtype of GEN[A], we add
to the term logic a type-schematized family of constants genA ∈ (A⇒
GEN[A]) together with a type-schematized set of constraints which
ensure that in any model, each sign type is embedded in a one-to-one
fashion into its generalization. (In the model, each of these constants is
interpreted as a function that maps each sign of a certain type into a
string of signs of length one). All that remains to complete the analysis
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of coordination is to add type-schematized conjunctions (e.g., andA and
orA) to the lexicon. What drives the analysis is the polymorphic typing
of these constants, which is not A⇒ (A⇒ A) (as would be suggested
by the Steedman typing), but rather the type

GEN[A]+ ⇒ (GEN[A]⇒ GEN[A]).

The phonological interpretation functor will ensure that the nonempty
list argument shows up to the left of the conjunction and the other ar-
gument to the right. (Note that, in order for coordinate structures to
serve as arguments to other signs, we must systematically retype our
unsaturated lexical entries from A ⇒ B to GEN[A] ⇒ B, e.g. VP is
redefined from NP⇒ S to GEN[NP]⇒ S.)
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