7

On theoretical and practical complexity
of TAG parsers

Carros GOMEz-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Abstract

We present a system allowing the automatic transformatfgpacsing schemata to
efficient executable implementations of their correspondiggraghms. This system can
be used to easily prototype, test and compafieidint parsing algorithms. In this work,
it has been used to generate severéledent parsers for Context Free Grammars and
Tree Adjoining Grammars. By comparing their performanceddterent sized, artifi-
cially generated grammars, we can measure their empirarapatational complexity.
This allows us to evaluate the overhead caused by using Tdgenig Grammars to
parse context-free languages, and the influence of stridggeammar size on Tree Ad-
joining Grammars parsing.

Keywords PARSING SCHEMATA, COMPUTATIONAL COMPLEXITY, TREE ADJOINING GRAM-

MARS, CONTEXT FREE GRAMMARS

7.1 Introduction

The process of parsing, by which we obtain the structure @ndesice as a
result of the application of grammatical rules, is a higldiewvant step in the
automatic analysis of natural languages. In the last de;ad@ous parsing
algorithms have been developed to accomplish this taskoAth all of these
algorithms essentially share the common goal of generatitige structure
describing the input sentence by means of a grammar, theagpes used
to attain this result vary greatly between algorithms, st tlifferent parsing
algorithms are best suited tofféirent situations.
Parsing schemata, introduced in (Sikkel, 1997), providermél, simple

and uniform way to describe, analyze and compafieint parsing algo-
rithms. The notion of a parsing schema comes from consiggrdnsing as a

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

87

88/ CarLos GOMEZ-RopRriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

deduction process which generates intermediate resuiks d@ms An ini-

tial set of items is directly obtained from the input sentsrand the parsing
process consists of the application of inference rulesg@dieductive steps
which produce new items from existing ones. Each item costaipiece of
information about the sentence’s structure, and a suadgsasfsing process
will produce at least onénal itemcontaining a full parse tree for the sentence
or guaranteeing its existence.

Almost all known parsing algorithms may be described by asipgr
schema (non-constructive parsers, such as those basedi@ networks,
are exceptions). This is done by identifying the kinds ofni¢ethat are used
by a given algorithm, defining a set of inference rules desugi the legal
ways of obtaining new items, and specifying the set of firehis.

As an example, we introduce a CYK-based algorithm (Vijays@ter and
Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi andgbes 1997).
Given a tree adjoining gramm& = (Vr,Vn,S,1,A)! and a sentence of
length n which we denote by a, ... a2, we denote byP(G) the set of
productions{(N” — NJNJ...N/} such thatN” is an inner node of a tree
y € (UA),andN]NJ ... N/ is the ordered sequence of direct childremNaf

The parsing schema for the TAG CYK-based algorithm is a fondhat
maps such a grammar G to a deduction system whose domain settloé
items

{[N”.i.], p..ad]]}

verifying thatN” is a tree node in an elementary trees (1 U A), i and |
(0 <i <) are string positionsp andg may be undefined or instantiated to
positionsi < p < q < j (the latter only whery € A), andadj € {true, falsg
indicates whether an adjunction has been performed on Node

The positions and j indicate that a substring. ...a; of the string is
being recognized, and positiopsandq denote the substring dominated by
v's foot node. The final item set would be

{[R*.,0,n,—,—,adj] |a € |}
for the presence of such an item would indicate that ther®aivalid parse
tree with yielda; a; ... a, and rooted aR®, the root of an initial tree; and
therefore there exists a complete parse tree for the sentenc
A deductive steéljfﬂ ® allows us to infer the item specified by its con-

IWhereVr denotes the set of terminal symboi4 the set of nonterminal symbolS, the
axiom, | the set of initial trees and the set of auxiliary trees.

2From now on, we will follow the usual conventions by which remminal symbols are rep-
resented by uppercase lettefs B. ..), and terminals by lowercase lettegs . ..). Greek letters
(a, B-..) will be used to represent treds! a node in the treg, andR the root node of the tree
-

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 89

sequent from those in its antecedents. . . nm. Side conditiong®) specify
the valid values for the variables appearing in the antetsdand consequent,
and may refer to grammar rules or specify other constrdigiisrhust be ver-
ified in order to infer the consequent. An example of one ofdbieema’s
deductive steps would be the following, where the opergpionp’ returnsp

if pis defined, ang’ otherwise:

[O.1.1".p.q,ad 1]
CYK BiNARY: [O =~ J..p.q.adp2] M? — OO} € P(G)
[M7,i,j,pUup,qud, falsqg

This deductive step represents the bottom-up parsing tipex@hich joins
two subtrees into one, and is analogous to one of the de@ustidps of the
CYK parser for Context-Free Grammars (Kasami 1965, You§éri7). The
full TAG CYK parsing schema has six deductive steps (or seNeve work
with TAGs supporting the substitution operation) and cafobed at (Alonso
etal., 1999). However, this sample deductive step is an pkaai how pars-
ing schemata convey the fundamental semantics of pargog@ms in sim-
ple, high-level descriptions. A parsing schema defines afspossible in-
termediate results and allowed operations on them, butndcgsecify data
structures for storing the results or an order for the ojpmrato be executed.

7.2 Compilation of parsing schemata

Their simplicity and abstraction of low-level details makgarsing schemata
very useful, allowing us to define parsers in a simple andgsttorward
way. Comparing parsers, or considering aspects such astregction and
completeness or their computational complexity, also bexoeasier if we
think in terms of schemata.

However, the problem with parsing schemata is that, althdligy are very
useful when designing and comparing parsers with pencilpager, they
cannot be executed directly in a computer. In order to excthe parsers
and analyze their results and performance they must be imgited in a
programming language, making it necessary to abandon gfedhistraction
level and focus on the implementation details in order taivba functional
and dficient implementation.

In order to bridge this gap between theory and practice, we luke-
signed and implemented a compiler able to automaticallysfam parsing
schemata into feicient Java implementations of their corresponding algo-
rithms. The input to this system is a simple and declaragpeasentation of
a parsing schema, which is practically equal to the form&htian that we
used previously. For example, this is the CYK deductive stephave seen
as an example in a format readable by our compiler:

90/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

@step CYKBinary

[Nodel,i,j,p,q,adl]
[Node2,j,j,p,q,ad?2]

Node3 -¢, Nodel Node2
[Node3 , i, j, Union(p;p’) , Union(q;q’) , false]

The parsing schemata compilation technique behind ouesy#t based
on the following fundamental ideas:

= Each deductive step is compiled to a Java class containitg tmomatch
and search for antecedent items and generate the corrésgaahclu-
sions from the consequent.

= The generated implementation will create an instance sfdlaiss for each
possible set of values satisfying the side conditions #fatito production
rules. For example, a distinct instance of the CYikARy step will be cre-
ated for each grammar rule of the fodv — O;O} € P(G), as specified
in the step’s side condition.

= The step instances are coordinated by a deductive parsgigesras the
one described in (Shieber et al., 1995). This algorithm esssa sound
and complete deduction process, guaranteeing that alsiteat can be
generated from the initial items will be obtained. It is a gec, schema-
independent algorithm, so its implementation is the samaifig parsing
schema. The engine works with the set of all items that haee gener-
ated and aragendaimplemented as a queue, holding the items we have
not yet tried to trigger new deductions with.

= In order to attain fficiency, an automatic analysis of the schema is per-
formed in order to create indexes allowing fast access mostdwo kinds
of index structures are generatedistence indexese used by the parsing
engine to check whether a given item exists in the item setevglarch
indexesare used to search for all items conforming to a given speeific
tion. As each dierent parsing schema needs to perforffedént searches
for antecedent items, the index structures that we genaratschema-
specific. Each deductive step is analyzed in order to keel thwhich
variables will be instantiated to a concrete value when ackemust be
performed. This information is known at schema compilatiore and al-
lows us to create indexes by the elements correspondingstantiated
variables. In this way, we guarantee constant-time acce$srs so that
the computational complexity of our generated implemémtatis never
above the theoretical complexity of the parsing algorithms

= Deductive step index@se also generated to provid@eient access to the
set of deductive step instances which can be applicable teea gem.
Step instances that are known not to match the item are tlteu¢ by

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 91

these indexes, so less time is spent on unsuccessful itechimgt

= Since parsing schemata have an open notation, for any mativaifrob-
ject can potentially appear inside items, the system ireduh extensibil-
ity mechanism which can be used to define new kinds of objectsé
in schemata. The code generator can deal with these usaedeijects
as long as some simple and well-defined guidelines are fetiow their
specification.

A more detailed description of this system, including a ntbmough ex-
planation of automatic index generation, can be found an{&Z-Rodriguez
et al., 2006b, 2007).

7.3 Parsing natural language CFGs

Although our main focus in this paper is on performance of Tgegsing al-
gorithms, we will briefly outline the results of some expegims on Context-
Free Grammars (CFG), described in further detail in (GéRedriguez
et al., 2006b), in order to be able to contrast TAG and CFGipars

Our compilation technique was used to generate parsershéICl¥K
(Kasami 1965, Younger 1967), Earley (Earley 1970) and Ceftner (Rosen-
krantz and Lewis Il 1970) algorithms for context-free graams) and these
parsers were tested on automatically-generated sentooethree diferent
natural language grammars: Susanne (Sampson 1994), Abayo(l 1993)
and Deltra (Schoorl and Belder 1990). The run-times forfadl algorithms
and grammars showed an empirical computational complé&xitgelow the
theoretical worst-case bound®{n®), wheren denotes the length of the input
string. In the case of the Susanne grammar, the measuremergslose to
being linear with string size. In the other grammars, thetiones grew faster,
approximatelyO(n?), still far below the cubic worst-case bound.

Another interesting result was that the CYK algorithm perfed better
than the Earley-type algorithms in all cases, despite bgérgerally consid-
ered slower. The reason is that these considerations agel bastime com-
plexity relative to string length, and do not take into aaudime complexity
relative to grammar size, which @(|P|) for CYK andO(|P))? for the Earley-
type algorithms, whergP| is the number of production rules in the grammar..
This factor is not very important when working with small gmaars, such as
the ones used for programming languages, but it becomeaffiueatal when
we work with natural language grammars, where we use thagsairules
(more than 17,000 in the case of Susanne) to parse relasi@l sentences.
When comparing the results from the three context-free grars, we ob-
served that the performance gap between CYK and Earley wagbwhen
working with larger grammars.

3]t is possible to reduce the computational complexity ofl&és parser to linear with respect

92/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

7.4 Parsing artificial TAGs

In this section, we make a comparison of fouffelient TAG parsing al-
gorithms: the CYK-based algorithm used as an example ircge¢tl, an
Earley-based algorithm without the valid prefix propertggdribed in Alonso
et al. 1999 and Alonso et al. 2004, inspired in the one in Sekdl®94), an
Earley-based algorithm with the valid prefix property (Adoret al. 1999) and
Nederhof’s algorithm (Nederhof 1999, Alonso et al. 2004)e3e parsers are
compared on artificially generated grammars, by using dugrsa compiler
to generate implementations and measuring their exectiti@s with several
grammars and sentences.

Note that the advantage of using artificially generated gnars is that we
can easily see the influence of grammar size on performahee. test the
algorithms on grammars from real-life natural languageooa, as we did
with the CFG parsers, we don't get a very precise idea of hevsite of the
grammar &ects performance. Since our experience with CFGs showsd thi
to be an important factor, and existing TAG parser perforcearomparisons
(e.g. Diaz and Alonso 2000) work with a fixed (and small) grzan we de-
cided to use artificial grammars in order to be able to adja#t btring size
and grammar size in our experiments and see the influencelofdmdors.

For this purpose, given an integkr> 0, we define the tree-adjoining
grammarGy to be the grammaBy = (V1,Vn, S, I, A) whereVr = {aj|0 <
j <k}, Vny ={S,B}, and

| = {S(B(ao))}*,

A={B(B(B* a)))l1<j <Kk

Therefore, for a giverk, Gk is a grammar with one initial tree and
auxiliary trees, which parses a language over an alphalibtkw 1 ter-
minal symbols. The actual language definedGyyis the regular language
Ly = ag(alayl..lay)*. ® We shall note that although the languadigsare triv-
ial, the grammar§y are built in such a way that any of the auxiliary trees
may adjoin into any other. Therefore these grammars aratsaitf we want
to make an empirical analysis of worst-case complexity.

to the grammar size by defining a new set of intermediate i@mastransforming accordingly
prediction and completion deduction steps. Even in thie,ca¥K performs better that Earley’s
algorithm due to the lower number of items genera@(V/y UV+| n?) for CYK vs. O(/G| n?) for
Earley’s algorithm, wherf&| denotes the size of the grammar measuréB|qdus the summation
of the lengths of all productions.

“Where trees are written in bracketed notation, and * is uset¬e the foot node.

SAlso, it is easy to prove that the gramn@ is one of the minimal tree adjoining grammars
(in terms of number of trees) whose associated languabg Note that we need at least a tree
containingag as its only terminal in order to parse the senteageand for each X i < k, we
need at least a tree containiagand no otheia; (j > 0) in order to parse the sentenags;.
Therefore, any TAG for the languad® must have at least+ 1 elementary trees.

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 93

Table 1 shows the execution time in millisecohds four TAG parsers
with the grammar&y, for different values of string lengtimand grammar
size K).

From this results, we can observe that both factors (steingth and gram-
mar size) have an influence on runtime, and they interactdesithemselves:
the growth rates with respect to one factor are influencedéyther factor,
so itis hard to give precise estimates of empirical comjmriat complexity.
However, we can get rough estimates by focusing on caseswinerof the
factors takes high values and the other one takes low vatiese(in these
cases the constant factotfsexting complexity will be smaller) and test them
by checking whether the sequenté, k)/ f(n) seems to converge to a pos-
itive constant for each fixell (if f(n) is an estimation of complexity with
respect to string length) or wheth&(n, k)/ f (k) seems to converge to a pos-
itive constant for each fixed (if f(k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical ticoenplexity
with respect to string length is in the range betwe¥n?€) andO(n°) for the
CYK-based and Nederhof algorithms, and betw&¢n?¢) andO(n®) for the
Earley-based algorithms with and without the valid prefingarty (VPP).
Therefore, the practical time complexity we obtain is falolbethe theoreti-
cal worst-case bounds for these algorithms, whichQ(ré®) (except for the
Earley-based algorithm with the VPP, whichOgn’)).

Although for space reasons we don't include tables with thelmer of
items generated in each case, our results show that theieahgpace com-
plexity with respect to string length is approximat€yn?) for all the algo-
rithms, also far below the worst-case boun@g®) andO(n®)).

With respect to the size of the grammar, we obtain a time cerilyl of
approximatelyO(|l U Aj?) for all the algorithms. This matches the theoreti-
cal worst-case bound, which@(]l U A?) due to the adjunction steps, which
work with pairs of trees. In the case of our artificially gesterd grammar,
any auxiliary tree can adjoin into any other, so it's logittelt our times grow
quadratically. Note, however, that real-life grammarshsas the XTAG En-
glish grammar (XTAG Research Group 2001) have relatively d&ferent
nonterminals in relation to their amount of trees, so maryspe trees are
susceptible of adjunction and we can’t expect their beldwibe much better
than this.

Space complexity with respect to grammar size is approxamx(|| U AJ)
for all the algorithms. This is an expected result, sincéhapgmerated item is
associated to a given tree node.

6The machine used for all the tests was an Intel Pentium 4 3Hg Gith 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.812b06) running on Windows XP.

94 / CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Run-times in ms: Earley-based without the VPP

String Size (n)

Grammar Size (k)

1 8 64 512 4096
2 ~0 16 15 1,156 109,843
4 ~0 31 63 2,578 256,094
8 16 31 172 6,891 589,578
16 31 172 625 18,735 1,508,609
32 110 609 3,219 69,406
64 485 2,953 22,453 289,984
128 2,031 13,875 234,594
256 10,000 101,219
512 61,266
Run-times in ms: CYK-based
) . Grammar Size (k)
Stiing Size (n) 1 8 64 512 4096
2 ~0 ~0 16 1,344 125,750
4 ~0 ~0 63 4,109 290,187
8 16 31 234 15,891 777,968
16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016
128 1,187 14,516 269,047
256 6,781 108,297
512 52,000
Run-times in ms: Nederhof’s Algorithm
) . Grammar Size (k)
String Size () 1 8 64 512 4096
2 ~0 ~0 47 1,875 151,532
4 ~0 15 187 4,563 390,468
8 15 31 469 12,531 998,594
16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047
128 5,703 25,703 302,766
256 37,125 159,609
512 291,141
Run-times in ms: Earley-based with the VPP
)) Grammar Size (k)
String Size (n) 1 8 64 512 4096
2 ~0 ~0 31 1,937 194,047
4 ~0 16 78 4,078 453,203
8 15 31 234 10,922 781,141
16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218
128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four dierent TAG parsers for artificially-generated
grammars$sy. Best results are shown in boldface.

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 95

Practical applications of TAG in natural language proaggsisually fall
in the range of values farandk covered in our experiments (grammars with
hundreds or a few thousands of trees are used to parse sentafreeveral
dozens of words). Within these ranges, both string lengthgaammar size
take significant values and have an important influence onugian times,
as we can see from the results in the tables. This leads ugedhed tradi-
tional complexity analysis based on a single factor (stiémgjth or grammar
size) can be misleading for practical applications, sina@an lead us to an
incomplete idea of real complexity. For example, if we arekireg with a
grammar with thousands of trees, the size of the grammaeisnibst influ-
ential factor, and the use of filtering techniques (SchabesJashi 1991) to
reduce the amount of trees used in parsing is essential &r dodachieve
good performance. The influence of string length in theses;am the other
hand, is mitigated by the huge constant factors relatedamgrar size. For
instance, in the times shown in the tables for the gran®ads, Wwe can see
that parsing times are multiplied by a factor less than 3 wherength of the
input string is duplicated, although the rest of the resudige lead us to con-
clude that the practical asymptotic complexity with resgedtring length is
at leastO(n?®). These interactions between both factors must be taken int
account when analyzing performance in terms of computatioomplexity.

Earley-based algorithms achieve better execution timas the CYK-
based algorithm for large grammars, although they are worsamall gram-
mars. This contrasts with the results for context-free gnams, where CYK
works better for large grammars: when working with CFGs, Chés a better
computational complexity than Earley with respect to graansize (see sec-
tion 7.3), but the TAG variant of the CYK algorithm is quadcatith respect
to grammar size and does not have this advantage.

CYK generates fewer items than the Earley-based algoritiines work-
ing with large grammars and short strings, and the opposippéns when
working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the saméer of
items than the one without this property, and has worse é¢xectimes. The
reason is that no partial parses violating this propertygemerated by any
of both algorithms in the particular case of this grammagsaranteeing the
valid prefix property does not prevent any items from beingggated. There-
fore, the fact that the variant without the VPP works bettethis particular
case cannot be extrapolated to other grammars. Howevedijfteeences in
times between these two algorithms illustrates the overbaased by the ex-
tra checks needed to guarantee the valid prefix property artécplarly bad
case.

Nederhof’s algorithm has slower execution times than theeoEarley
variants. Despite the fact that Nederhof’s algorithm israpriovement over

96/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

the other Earley-based algorithm with the VPP in terms of potational
complexity, the extra deductive steps it contains makedsvtex in practice.

7.5 Parsing the XTAG English grammar

In order to complement our performance comparison of the dtgorithms
on artificial grammars, we have also studied the behaviohefgarsers
when working with a real-life, large-scale TAG: the XTAG Hish gram-
mar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we capletegiven
the artificial grammar results, i.e. they approximatelychahe times in the
tables for the corresponding grammar sizes and input deirgghs. The most
noticeable dierence is that the Earley-like algorithm verifying the dglre-
fix property generates fewer items that the variant withbet VPP in the
XTAG grammar, and this causes its run-times to be fasterttBsidifference
is not surprising, as explained in the previous section.

Note that, as the XTAG English grammar has over a thousamaegitary
trees, execution times are very large (over 100 seconds) wheking with
the full grammar, even with short sentences. However, whieeeaselection
filter is applied in order to work with only a subset of the graar in function
of the input string, the grammar size is reduced to one or twadhed trees
and our parsers process short sentences in less than 5 seBSarkhr's XTAG
distribution parser written in Capplies further filtering techniques and has
specific optimizations for this grammar, obtaining betieess for the XTAG
than our generic parsers.

Table 2 contains a summary of the execution times obtainedibgarsers
for some sample sentences from the XTAG distribution. Nb&t the gen-
erated implementations used for these executions applyngrgioned tree
filtering technique, so that theffective grammar size is fierent for each
sentence, hence the high variability in execution timesrévitetailed infor-
mation on these experiments with the XTAG English grammartmafound
at (Gbmez-Rodriguez et al., 2006a).

7.6 Overhead of TAG parsing over CFG parsing

The languageky that we parsed in section 7.4 were regular languages, so in
practice we don’t need tree adjoining grammars to parse,takhough it was
convenient to use them in our comparison. This can lead utaer how
large is the overhead caused by using the TAG formalism teepaintext-free
languages.

Given the regular languads = ag(az]azl..|lax)*, a context-free grammar
that parses it i€, = (N, X, P, S) with N = {S} and

"Downloadable at: ftpftp.cis.upenn.edpubyxtagleny

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 97

Run-times in milliseconds

Sentence Ear. no| Ear

CYK VPP VPP Neder.
He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969
That woman in the city contributed tq
this article 13641 6515 7172 31828

=3

That people are not really amateurs [a
intellectual dueling 16500 7781 15235 56265

[¢)

The index is intended to measure futuf
economic performance 16875 17109 9985 39132

They expect him to cut costs through
out the organization 25859 12000 20828 63641

=

He will continue to place a huge burde
on the city workers 54578 35829 57422 | 178875

He could have been simply being a jerk 62157 | 113532 | 109062 | 133515

A few fast food outlets are giving it 3
try 269187 | 3122860 | 3315359

TABLE 2 Run-times obtained by applyingftérent XTAG parsers to several
sentences. Best results for each sentence are shown iad®ldf

P={S—ajU{S—Sall<i<k

This grammar minimizes the number of rules needed to pargé + 1
rules), but has left recursion. If we want to eliminate l&ftursion, we can
use the grammdg) = (N, X, P, S) with N = {S, A} and

P={S—>aAlU{A-> gAl<i<KlU{A— ¢

which hask + 2 production rules.

The number of items generated by the Earley algorithm foteodsfree
grammars when parsing a sentence of lemgtiom the languagéy by using
the grammag, is (k+2)n. In the case of the gramm@y/, the same algorithm
generate§(+4)n+”(“T‘1)+1 items. In both cases the amount of items generated
is linear with respect to grammar size, as in TAG parsersh\idspect to
string size, the amount of items @(n) for G andO(n?) for G/, and it was
approximatelyO(n?) for the TAGGy. Note, however, that the constant factors

98/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

behind complexity are much greater when working wighthan with Gy,
and this reflects on the actual number of items generateceff@mple, the
Earley algorithm generates 16,833 items when working @{thand a string
of lengthn = 128, while the TAG variant of Earley without the valid prefix
property generated 1,152,834 items).

The execution times for both algorithms appear in table 8nfthe ob-
tained times, we can deduce that the empirical time comylexiinear with
respect to string length and quadratic with respect to gransie in the case
of G}; and quadratic with respect to string length and linear wétpect to
grammar size in the case Gf/. So this example shows that, when parsing
a context-free language using a tree-adjoining grammaget@n overhead
both in constant factors (more complex items, more dedestieps, etc.) and
in asymptotic behavior, so actual execution times can berakwrders of
magnitude larger. Note that the way grammars are desigisedhals an in-
fluence, but our tree adjoining grammag are the simplest TAGs able to
parse the languagés by using adjunction (an alternative would be to write
a grammar using the substitution operation to combine)rees

n Grammar Size (k), gramm&,
1 8 64 512 4096
2 ~0 ~0 ~0 31 2,062
4 ~0 ~0 ~0 62 4,110
8 ~0 ~0 ~0 125 8,265
16 ~0 ~0 ~0 217 15,390
32 ~0 ~0 15 563 29,344
64 ~0 ~0 31 1,062 61,875
128 ~0 ~0 109 2,083 | 122,875
256 ~0 15 188 4,266 | 236,688
512 15 31 328 8,406 484,859
n Grammar Size (k), gramm&y/
1 8 64 512 4096
2 ~0 ~0 ~0 ~0 47
4 ~0 ~0 ~0 15 94
8 ~0 ~0 ~0 16 203
16 ~0 ~0 ~0 46 688
32 ~0 ~0 15 203 1,735
64 31 31 93 516 4,812
128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Run-times obtained by applying the Earley parser for cdrfree grammars
to sentences ihy.

RErFERENCES / 99

7.7 Conclusions

In this paper, we have presented a system that compilengasshemata
to executable implementations of parsers, and used it to&eathe perfor-
mance of several TAG parsing algorithms, establishing @mmpns both be-
tween themselves and with CFG parsers.

The results show that both string length and grammar sizébeampor-
tant factors in performance, and the interactions betwhemtsometimes
make their influence hard to quantify. The influence of stterggth in prac-
tical cases is usually below the theoretical worst-casentis(betwee®(n)
andO(r?) in our tests for CFGs, and slightly bela®(n3) for TAGs). Gram-
mar size becomes the dominating factor in large TAGs, makegfiltering
techniques advisable in order to achieve faster execuitioest

Using TAGs to parse context-free languages causes an @cebath in
constant factors and in practical computational compjexiitus increasing
execution times by several orders of magnitude with reqpeCEG parsing.

Acknowledgments

The work reported in this article has been supported in part b
Ministerio de Educacion y Ciencia and FEDER (TIN2004-06-2203-
01, TIN2004-07246-C03-02), Xunta de Galicia (PGIDITO5EZ0501PN,
PGIDITO5PXIC10501PN, Rede Galega de Procesamento da &xegei Re-
cuperacion de Informacion), and Programa de becas FPhigtdrio de Ed-
ucacion y Ciencia).

References

Alonso, Miguel A., David Cabrero, Eric de la Clergerie, an@el Vilares. 1999.
Tabular algorithms for TAG parsing. Froc. of EACL'99, Ninth Conference of the
European Chapter of the Association for Computational Listics pages 150—
157. ACL, Bergen, Norway.

Alonso, Miguel A., Eric De la Clergerie, Victor J. Diaz,caiManuel Vilares. 2004.
Relating tabular parsing algorithms for LIG and TAG. In H.rBuJ. Carroll, and
G. Satta, edsNew Developments in Parsing Technolpggl. 23 of Text, Speech
and Language Technology Serieshap. 8, pages 157-184. Dordrecht-Boston-
London: Kluwer Academic Publishers,.

Carroll, J. 1993. Practical unification-based parsing dfirzd language. PhD thesis.
Tech. Rep. 314, Computer Laboratory, University of Cang@idCambridge, UK.

Diaz, Victor J. and Miguel A. Alonso. 2000. Comparing tibyparsers for tree ad-
joining grammars. In D. S. Warren, M. Vilares, L. Rodrigue#ares, and M. A.
Alonso, eds.Proc. of Tabulation in Parsing and Deduction (TAPD 200pages
91-100. Vigo, Spain.

100/ Carros GOMEZ-RopRriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Earley, J. 1970. Anfécient context-free parsing algorithn€Communications of the
ACM 13(2):94-102.

Gomez-Rodriguez, Carlos, Miguel A. Alonso, and Manudaiés. 2006a. Generat-
ing XTAG parsers from algebraic specifications. Rroceedings of the 8th Inter-
national Workshop on Tree Adjoining Grammar and Relatedr@isms. Sydney,
July 2006 pages 103-108. East Stroudsburg, PA: Association for Qtatipnal
Linguistics.

Gbmez-Rodriguez, Carlos, Miguel A. Alonso, and Manudhids. 2007. Genera-
tion of indexes for compiling fcient parsers from formal specifications. Rroc.
of Eleventh International Conference on Computer Aidede®ys Theory (EURO-
CAST 2007)Las Palmas, Spain.

Gbmez-Rodriguez, Carlos, Jesls Vilares, and Miguel fango. 2006b. Auto-
matic generation of natural language parsers from dealarapecifications. In
L. Penserini, P. Peppas, and A. Perini, e@TAIRS 2006 - Proceedings of the
Third Starting Al Researchers’ Symposium, Riva del Gartiy,| August 28-29,
2006 vol. 142 ofFrontiers in Atrtificial Intelligence and Applicationpages 259—
260. AmsterdanBerlin/Oxford/Tokyg/Washington DC: 10S Press. Long version
available at httg/www.grupocole.orflGomVilAlo2006along.pdf.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoiniagngnars. In G. Rozen-
berg and A. Salomaa, edslandbook of Formal Languages. Vol 3: Beyond Words
chap. 2, pages 69-123. BeyliteidelbergNew York: Springer-Verlag.

Kasami, T. 1965. Anféicient recognition and syntax algorithm for context-free-la
guages. Scientific Report AFCRL-65-758, Air Force Camtei®Research Lab.,
Bedford, Massachussetts.

Nederhof, Mark-Jan. 1999. The computational complexitthefcorrect-prefix prop-
erty for TAGs. Computational Linguistic25(3):345—-360.

Rosenkrantz, D. J. and P. M. Lewis Il. 1970. Deterministiét IGorner parsing. In
Conference Record of 1970 Eleventh Annual Meeting on Sngi@nd Automata
Theory pages 139-152. IEEE, Santa Monica, CA, USA.

Sampson, G. 1994. The Susanne corpus, release 3.

Schabes, Yves. 1994. Left to right parsing of lexicalizezb{adjoining grammars.
Computational Intelligenc&0(4):506-515.

Schabes, Yves and Aravind K. Joshi. 1991. Parsing with #&izied tree adjoining
grammar. In M. Tomita, edCurrent Issues in Parsing Technologiebap. 3, pages
25-47. Norwell, MA, USA: Kluwer Academic Publishers. ISBN/023-9131-4.

Schoorl, J. J. and S. Belder. 1990. Computational lingzssit Delft: A status report,
Report WTMTT 90-09.

RerereNCES / 101

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Peté®a. Principles and
implementation of deductive parsingournal of Logic Programmin@4(1-2):3—
36.

Sikkel, Klaas. 1997 Parsing Schemata — A Framework for Specification and Anal-
ysis of Parsing AlgorithmsTexts in Theoretical Computer Science — An EATCS
Series. BerlifHeidelbergNew York: Springer-Verlag. ISBN 3-540-61650-0.

Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some compoaitatl properties of tree
adjoining grammars. 183rd Annual Meeting of the Association for Computational
Linguistics pages 82-93. ACL, Chicago, IL, USA.

XTAG Research Group. 2001. A lexicalized tree adjoiningngmear for English.
Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Information and ControlL0(2):189—-208.

