DotCCG and VisCCG: Wiki and Programming Paradigms for
Improved Grammar Engineering with OpenCCG

Jason Baldridge Sudipta Chatterjge
Alexis Palmet, and Ben Wing

TDept. of Linguistics;;Dept. of Computer Science

University of Texas at Austin

Proceedings of the GEAF 2007 Workshop
Tracy Holloway King and Emily M. Bender (Editors)
CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)
2007
CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We present a suite of tools for simplifying the creation araintenance
of grammars for the OpenCCG parsing and realization sysfdra.core of
our approach relies on a terse but expressive textual fold@CCG, for
declaring CCG grammars. It supports powerful string exjpenrssthat allow
grammar developers to eliminate redundancy in the de@araf both mor-
phology and category definitions. Grammars written in thisrfat are con-
verted into the XML utilized by OpenCCG using theg2xml utility, which
—like a programming language compiler— provides infororategarding er-
rors in the grammar, including the type of error and the linmber on which
it occurs. DotCCG grammars can be edited with VisCCG, a gcapmter-
face which provides visualization of various componenthefgrammar and
allows local editing of information in a manner inspired bikis. We also
report on resources developed to facilitate wide use of then@QCG tool
suite presented in this paper and on recent uses of the bt academic
research and classroom environments.

1 Introduction

A major challenge of grammar engineering is enabling uséits hitle computer
experience to create complex grammars. Many users encaigtgficant obsta-
cles and easily get frustrated by trivial syntax errors amatimtuitive formats. At
the same time, more experienced users can feel needlessiyained by grammar
engineering aids designed for novice users. Such frustraslow users down and
can result in a focus on mechanics more than on the gramredr its

This paper presents two contributions for improving curf@actice in gram-
mar engineering. First, it provides a terse but expressit@dt for declaring Com-
binatory Categorial Grammars (CCG) (Steedman, 2000; Staednd Baldridge,
To appear) that utilizes ideas from software engineeringgducing redundancy in
CCG grammars. The basic idea is general enough to be usedtivihformalisms.
Second, it describes a wiki-inspired editing interfacessGCG, that supports gram-
mar visualization while allowing users to directly editipléext grammars.

The core motivation for these developments is to improvegtaenmar de-
velopment cycle for OpenCC®penccg.sf.net) (Hockenmaier et al., 2004;
Baldridge and Kruijff, 2002; White and Baldridge, 2003),asing and realization
system that uses CCG, and to provide a model for facilitagiragmnmar develop-
ment for both novice and expert grammar writers. OpenCCGdmagslacked such
an environment despite its use in a number of projects. Gemmdeveloped with
VisCCG are compiled into OpenCCG’s native XML format, muadhtlie same

TWe would like to thank Emily Bender, Fred Hoyt, Geert-JaniffiuMark Steedman, Michael
White, students in Jason Baldridge’s categorial gramnmanputational syntax, and computational
linguistics courses at UT Austin in 2006/7, and the partioig of the GEAF 2007 workshop for
valuable feedback. This research was supported by a LiBetalinstructional Technology Grant
from the University of Texas at Austin.

manner as wiki pages produce HTML. The goal is to create a m@nengineer-
ing environment for CCG that is both easyléarnto use and easy to use.

We begin by motivating our work in the context of OpenCCG a#l asother
grammar engineering platforms. In section 4 we then briefisoduce CCG and
OpenCCG and some of the problems with OpenCCG'’s native XMimgnar for-
mat. Section 5 discusses DotCCG, followed by an extensseudsion of its pa-
rameterized macro mechanisms in section 6. Then we prese@C% and con-
clude with a brief discussion of uses of our tools and resmsifor developing
OpenCCG grammars.

2 Motivation

A graphical user interface (GUI) was developed for Grok, @peG’s predeces-
sor, but development was ceased as the parsing systemwselimproved (see
Bierner (2001) and Baldridge (2002) for specific refererm&tok). Developing
grammars for OpenCCG has since involved working with undyie{ML specifi-
cations. Our work was initiated to address this (ratherdagap in CCG grammar
development. Several aspects of our approach are novel and may be uséfid in
context of work in other formalisms and/or grammar engimgeenvironments.

The schism between computational definitions and the grartireq are sup-
posed to express has been addressed in various ways, witdizégion being a
common strategy for more intuitive representations of tiaengnar. One approach
is to develop a GUI for editing objects such as trees and ffeattiuctures, such
as that of the XTAG system (Doran et al., 2000). The XTAG systecluded a
graphical tree-drawing editor which allowed the user tadttfeatures and labels
to nodes of a tree. In such systems, grammar developerdyudoatot work with
the underlying code. A high-level approach like that of thEA% tree editor is
friendly for novice users but can be frustratingly resivietfor experienced users.

An alternative is to develop grammars by working with a l@wvel format and
then visualizing them with a separate GUI whidisplaysinformation. For ex-
ample, the LKB system (Copestake, 2002) provides extensighly configurable
displays of various components of grammars written in theeTpescription Lan-
guage. The display functionality in the XLE system for graanrdevelopment in
the Lexical-Functional Grammar framework (Butt et al., 8% similarly infor-
mative and configurable. In such systems, however, the al@setannot directly
edit the grammar using the GUI. Instead, the plain text gramimedited and then
reloaded to view the effect of the modifications in the graphiepresentation.

An interesting compromise between visualization and lewel specification
can be observed with the use of wikis for creating web contdiitML and XML
are cumbersome and unintuitive formats; wiki notation aglkernative has en-

*Concurrently with our work, Scott Martin and Michael WhiteGhio State University developed
a complementary tool callegrammardoc which produces a set of HTML pages for visualizing
OpenCCG grammars. Botgftammardoc and our tools are distributed with the OpenCCG system.

1| pay =** close ** attention wiki syntax
2 | pay close attention HTML syntax
3 | paycloseattention display

Figure 1: Wiki-style notation as shorthand for HTML

abled lay users to create web content quickly and effegtivedr example, in one
common wiki syntax, boldfaced text is indicated with doua$terisks around the
text. This shorthand (Figure 1, line 1) is then converted HTML (line 2) and
displayed as boldfaced text (line 3). Wikis also make it ¢asgdit small portions
of documents while visualizing the rest, and they providengdiate feedback on
the visual outcome of edits. DotCCG provides a similar steort! notation for
OpenCCG’s XML, and VisCCG provides user-friendly visuatisn and editing.

Software engineering provides another source of ideasgrfpraving grammar
engineering. Most grammar specifications can be viewed @grgmming lan-
guages patrticularized to natural language, yet grammé#éopias typically do not
provide much support for error checking and error messagesccg2xml utility
compiles DotCCG to OpenCCG’s XML and supports such chedikitige process,
while VisCCG provides feedback in real-time (during edij)in

Integrated Development Environments (IDES) for prograngianguages can
be used to improve productivity for many developers. A keyperty of IDEs is
that they are optional — a developer may use a plain textreit@rite programs if
they wish. We see VisCCG in this light. It is particularly tiddor those who are
creating their first grammars. In the classroom setting, bgeoved that users with
less experience working with computers tend to stick wititiregl their grammars
using VisCCG, but many others —particularly those with paogming experience—
switch over to their favorite text editor (e.g. Emacs or \Mige they understand the
DotCCGformat. The latter would still periodically load thgrammars in VisCCG.
We see this availability of choice as a highly desirablelfeabf the new tools we
have developed for OpenCCG: the DotCCG formeagi2xml , and VisCCG.

3 Combinatory Categorial Grammar

CCG s alexicalized grammar formalism that has attractel loeguistic and com-
putational interest. It has a universal rule component dnaes the combination
of categories and their semantics to provide compositianalyses for sentences.
Categories may be either atomic elements or (curried) immetwhich specify the
canonical linear direction in which they seek their argutserSome simplified
example lexical entries are given below:

Olivia := np the:=np/in

Finn:=np saw:= (s\np)/np

plane:=n thinks:= (s\np) /s

The most basic rules are forwardand backward<) application. CCG also
utilizes rules based on the compositid)(type-raising T), and substitutionS)
combinators of combinatory logic. The rules of CCG 4re:

>) XLY Y =X (<) Y X\Y =X

>B) XLY Y/Z=X/Z (<B) Y\Z X\Y = X\Z

(>B.) XAY Y\«Z=X\«Z| (<By) YAZ X\Y = X/Z

>T) X=Y/(Y\X) (<T) X=Y\(Y/X)
Each rule is keyed to a modality; this allows lexical itemsstdectively utilize
some rules but not others. For example, thelash on the category fdine keeps
the composition rules from causing ungrammatical word iopgemutations within
English noun phrases. See Baldridge (2002) and Baldridde<amijff (2003) for
full explication of the computational and linguistic sijoance of modalities.

Though the application rules do the majority of the work, tileers are cru-
cial for building the non-standard constituents for whieltegiorial grammars are
well-known. With these rules and the categories given ajppeeecan provide an
incremental derivation for a sentence such as ‘Finn thinkgasaw the plane’:

Finn thinks Olivia saw the plane
np (s\np)s np _ (s\np)/np npin n
>T >T -
s/(s\np) s/(s\np) np
>B
S/oS
>B
s/(s\np)
>B
s/np

>

S
The constituent/np derived above for ‘Finn thinks Olivia saw’ is also used in
analyses for relative clauses like ‘the plane that [FinnkkiOlivia saw]’ and right-
node raising sentences like ‘[Kestrel heard] and [Finnkki@livia saw] the plane’.

There has been a great deal of work in computational lingsgistsing CCG
over the past two decades, and there is an even greater aégret#ity in recent
years. A major development was the creation of CCGbank (elutiaier and
Steedman, 2007), which has allowed the creation of fast ecutate probabilistic
CCG parsers for producing deep dependencies (Hockenn24i@8; Bos et al.,
2004; Clark and Curran, 2007). CCG has also been used todrsdunantic parsers
from sentences paired with logical forms (Zettlemoyer aodli@s, 2007).

Work with OpenCCG represents another major branch of CCe&areh. It is
used for testing and developing syntactic and semanticysesl(Bierner, 2001;
Baldridge, 2002; Kruijff and Baldridge, 2004; Gerstenlsrgnd Wolksa, 2005)
and for research into CCG parsing and realization (Hockésmet al., 2004;
White and Baldridge, 2003; White, 2006b; White et al., 2007 performs pars-
ing/realization in the systems of a number of projects, nmanyhich are given in
Figure 2. Most of these are dialog systems, including nhtarguage interfaces
for robots (CoSy, JAST, and INDIGO) and MP3 systems (SAMMIE)

2We exclude substitution here for space reasons. An examplB:i (X4Y)4Z Y AZ = XAZ.

Project References/Website
AdaRTE — RojasBarahona (2007)

http://www.labmedinfo.org/research/adarte/adarte.ht

COoMmIC Foster and White (2005, 2007); Nakatsu and White (2006

White (20066\% http:/mww.hcre.ed.ac.uk/comic/
CoSy Kruijff et al. (2007) http://www.cognitivesystems.org
CrAg Isard et al. (2006 http://www.hcre.ed.ac.uk/crag/
DIALOG Wolska and Kruijff-Korbayova (2004); Benzmillet aI (2007)

http://www.ags.uni-sb.de/ ~dialog/

FLIGHTS Moore et al. (2004)
INDIGO http://www.ics.forth.gr/indigo/
JAST Rickert et al. (2007) http://www.euprojects-jast.net/
Methodius Isard (2007) http://www.Itg.ed.ac.uk/methodius/
SAMMIE Becker et al. (2006) http:/Awww.talk-project.org

Figure 2: Example projects that use OpenCCG for parsing @alization.

4 OpenCCG’s XML Format

The underlying native specification format of OpenCCG is XNHrammatical in-
formation is split across six interdependent files, someto€wdefine components
that were directly inspired by XTAG (Doran et al., 2000). E#ite defines a major
component of the grammar, including (a) a structured lexicontaining families
of lexical entries, (b) a morphological database pairingdsavith their stems and
morphological features, (c) morphological macros instding feature values on
lexical entries, (d) a hierarchy of typed features, (e) aofgtarameterized CCG
rules, and (f) a testbed of sentences used for simple régnegsting.

As an example of what is involved in creating lexical entire®penCCG, Fig-
ure 3 shows a fragment of the XML lexicon, morphology, ancetijfeature files
for an Ojibwe grammar. This fragment defines a noun family that has a siegle
ical category, which contains three lexical itergaago‘porcupine’,kwe‘woman’,
andmzinig‘book’. Each lexical item inflects with four forms: singulproximate,
singular obviative, plural proximate, and plural obviativ he inflectional suffixes
vary according to the stemGaagoandkweare of animate gender, whitazinig
is inanimate. A basic feature hierarchy is defined, comgjstif person (2nd, 1st,
3rd, non3rd), number (singular, plural), gender (animatimate), and obviation
status (proximate, obviative). Note that the majority af XML for defining the
feature hierarchy has been truncated for space reasons.

Developing grammars directly in XML is time-consuming angoe prone.
XML was designed as a format to standardize communicatiaatf among com-
puters, not for direct editing by humans. Furthermore, @ 6's XML for-
mat contains many redundancies and interdependencielindeto errors when
a change is made in one place and not propagated elsewherexdfople, the
association between the part of spesidnd the three lexical items is declared in
the lexicon file and in multiple places throughout the motpby file. The decla-
rations of multiple inflected forms of the same stem are aighly repetitive and
fail to express any generalizations over the forms. Fin#ily features attached to

30jibwe is an Algonquian language of the upper Great Lakeimnegnd southeastern Ontario.

Ojibwe lexicon file

<family name="“N" pos=“N" closed="true">
<entry name=“Entry-1">
<atomcat type="n">

<fs id="1">
<feat attr="index”">
<|f>
<nomvar name="X"/>
</If>
</feat>
</fs>
<|f>

<satop nomvar="X">
<prop name="['DEFAULTY"/>
</satop>
</If>
</atomcat>
</entry>
<member stem="mzinigna’/>
<member stem=‘"gaago”/>
<member stem="kwe"/>
</family>

Ojibwe morphology file

<entry word='gaago’ macros='@3rd @sg @prox @anim’ pos=‘N’ stem='gaago’/>
<entry word='gaagon’ macros="@3rd @sg @obv @anim’ pos=N’ stem=‘gaago’/>
<entry word=‘gaagog’ macros='@3rd @pl @prox @anim’ pos='N ' stem='gaago’/>
<entry word='gaagong’ macros='@3rd @pl @obv @anim’ pos=N ' stem='gaago’/>
<entry word=‘mzinigna’ macros='@3rd @sg @prox @inan’ pos= ‘N’ stem='mzinig'/>
<entry word='mzinignan’ macros='@3rd @sg @obv @inan’ pos= ‘N’ stem='mzinig’/>
<entry word='mzinignag’ macros='@3rd @pl @prox @inan’ pos ='N’ stem='mzinig’/>
<entry word=‘mzinignang’ macros="@3rd @pl @obv @inan’ pos ='N' stem='mzinig’/>
<entry word='kwe’ macros="@3rd @sg @prox @anim’ pos='N" st em="kwe’/>

<entry word="kwewan’ macros='@3rd @sg @obv @anim’ pos=N’ stem="kwe'/>
<entry word='kwen’ macros='@3rd @pl @prox @anim’ pos=‘N’ s tem="kwe’/>
<entry word='kwenwan’ macros='@3rd @pl @obv @anim’ pos='N ' stem="kwe'/>

<macro name="@anim">

<fs id="1" attr="GEND" val="anim"/>
</macro>
<macro name="@inan">

<fs id="1" attr="GEND" val="inan"/>
</macro>

Ojibwe typed-feature file

<type name="GEND"/>

<type name="anim" parents="GEND"/>
<type name="inan" parents="GEND'"/>
<type name="OBV"'/>

<type name="prox" parents="OBV"/>
<type name="obv" parents="OBV"/>

Figure 3: XML specifying an Ojibwe noun family containing ¢ lexical items.

feature {
gend<1>: anim inan;
pers<1>: 1st 2nd 3rd;
num<1>: sg pl;
obv<1>: prox obv;

}

family N {
entry: n<1>[X]: X(*),
}

def noun(stem, obv-end, pl-end, gend) {
word stem:N {
stem: 3rd sg prox gend;
stem.obv-end: 3rd sg obv gend;
stem.pl.end: 3rd pl prox gend,;
stem.obv-end.pl-end: 3rd pl obv gend;
}
}

noun(gaago, n, g, anim)
noun(mzinigna,n, g, inan)
noun(kwe, wan, n, anim)

Figure 4: DotCCG equivalent of the Ojibwe XML fragment givierFigure 3.

inflected forms need to be declared both in the morphologyygretl-feature files.

5 DotCCG: shorthand for OpenCCG

DotCCG was created to overcome the deficiencies of direct Xifyut of gram-
mars? It is a human-friendly format which seeks to eliminate regamcy and
boost expressiveness while requiring far fewer lines ofectithn raw XML. It
was designed to be concise, flexible, and easy to use, andicgfcintended
for direct input and editing using a text editor. The gramisaplaced in a sin-
gle .ccg file, with declarations in any order and freely grouped orasefed. All
of the XML required by OpenCCG is generated by passingdtg file through
ccg2xml , a program written in Python and implemented using PBéandling the
dependencies in this way greatly reduces the burden on dnengar developer and
increases the grammar’s modularity and maintainabiliigufe 4 shows the full
DotCCG equivalent of the Ojibwe XML fragment.

DotCCG was designed with an emphasis on making the gramreeifisption
language as tolerant and expressive as possible. The gt DotCCG syntax
is like C, Java, or Perl. However, the syntax is very forgivom the usage of com-
mas, semicolons, and other terminators and separato&ctirtiis punctuation can

4An existing solution using XSLT transformations is avaiéafBozsahin et al., 2006) but requires
significant technical expertise.

SPLY, available ahttp://www.dabeaz.com/ply/ ,is a package that provides functionality
equivalent to Lex and YACC.

be omitted as long as no syntactic ambiguity will reSulthis eliminates one of
the major stumbling blocks grammar engineers typicallg faben adjusting to an
unfamiliar format. Although DotCCG looks similar to a tradnal programming
language, the format is intended for use by non-programaergell as program-
mers. Its semantics are on a higher level than most prograghtanguages, and
it consistently favors expressiveness and ease-of-useaigiectformatting. It is le-
nient in its handling of commas and other punctuation, anstisyntactic elements
can be omitted if not needed, with sensible default behavior

The five sections of DotCCG grammars are described belowh Eection is
implemented within theccg file with a series of declarations.

Features— Declaring features allows for simple specification of aater-
ence to features in lexical entries and categories. For pkarthe Ojibwe gram-
mar fragment shown above creates a simple feature strusttir@erson, number,
gender and obviation features. The character in angle étaédllowing the name
of the feature is required by OpenCCG and relates to its nméstmafor unifying
feature values across lexical categories. Features in ©@t€an also be nested
and allow for multiple inheritance.

Words — Word declarations associate lexical items with particaktegories
and features as well as specifying morphological inforomatiThe following are
two examples for English, one showing a simple witwel of family Det , and the
other showing a pseudo-wopdol of family Pro and semantic classimate
with various surface realizations according to case andogum

(1) word the:Det;
word prol:Pro(animate) {
I: 1st sg nom;
me: 1st sg acc;
we: 1st pl nom;
us: 1st pl acc; }

Word declarations are commonly placed inside of expansiam thenoun ex-
pansion in the Ojibwe fragment. See section 6 for furthecudision.

Rules— This section specifies the rules allowed or disallowed éhrticular
grammar. The CCG rules enabled by default are the forwardoankiward vari-
eties of application, harmonic composition, and crossedpasition. Substitution
rules must be invoked explicitly. OpenCCG supports the e of Baldridge
and Kruijff (2003), so the applicability of the rules is cooited by the use of these
modalities on slashes in categories.

Type-raising can be invoked and restricted to particulgumrent and result
categories. For example, the following declaration addstenp = s$/(s$\np):

(2) typeraise + $: np => s;

Type-changing rules can also be added. The following woeldie way of
implementing pro-drop in a grammag;§ \npnom Changes tGp,):

5The only situation where separators are required occursgunzents to textual expansions,
which can consist of arbitrary text.

(3) typechange: sffinite]\np[nom] => sffinite] ;

Lexicon/Categories— Lexical families consist of one or more category declara-
tions and optional specification of lexical items which arennbers of that family.
For example, in English the lexical famiyet has just a single categoryp /,n.
The family for dative alternation verbs, though, has twosgilile categories, one
for the double object construction and one for the pp-compl& construction.
There are two types of intransitive verbs in Ojibwe, thos¢hvein animate
subject VAI) and those with an inanimate onell(). The category declarations
for these two families are shown beldvEeatures are enclosed in square brackets,
and the final term, after the second colon, is the semantieseptation.

(4) family VAI {

entry: s<8>[E] | n<l>[anim X]: E:action (* <actor>X:sem-obj); }
family VII {
entry: s<8>[E] | n<1>[inan X]: E:action (* <actor>X:sem-obj); }

Testbed— The testbed contains a list of constructions and the nuwifiarses the
grammar is expected to find for each construction. The tdgtaglity provides for
simple regression testing, e.g. whether the expected nuofiparses are obtained
and whether sentences can be reverse realized from the@ pEsults$.

(5) testbed {
wiisniwag gaagog: 1; ## the porcupines eat
wiisniwag mzinignan: 0; ## +xthe books eat }

6 Expansions with DotCCG

6.1 Introduction to expansions

Most grammar engineering systems provide mechanisms t@eecedundancy.
These support the expression of various levels of genataliz while providing
power and flexibility. For example, XLE has macros and pataneed rules, and
the LKB uses types to capture lexical and syntactic regigari DotCCG offers
parameterized string-rewrite functions that we eatbansions

We chose expansions as our primary abstraction mechanisause they are
flexible and easy to use. The definitions directly specifyrtegpansions and mir-
ror what will be inserted and processed when an expansibis cahde. The lack of
a need to “program” data makes expansions easy to use fqurogmammers. Fur-
thermore, expansions can abstract augyportion of a text, regardless of whether
such a usage was anticipated in the initial design of the gramA programmed
mechanism, by contrast, either has to impose a uniformtsteion all specifica-
tions or have separate mechanisms to handle each type cius&u

"The numbers in angle brackets represent the feature steuEiassigned to the category. These
are global for the grammar: this is one of the main weaknezs@penCCG grammar specification.

8The sentences given here are not surface forms but rattsiziakions of Ojibwe sentences prior
to phonological processes.

Our expansions are quite similar to XLE macros and parataeterules, but
with greater syntactic flexibility, fewer constraints, andreased string manipula-
tion capabilities. The expansions allow DotCCG to handigequomplex morphol-
ogy without having to interface with external morphologianalyzers. Of course,
there are many advantages to interfacing with existingsteoth as morphological
analyzers, and XLE grammars have been successfully intstfavith finite-state
analyzers (Kaplan et al., 2004). Along with the flexible syantof course, comes a
reduced level of control over expansions, for good and foblihlike XLE, for ex-
ample, no error occurs if not all input arguments appearerotitput specified for
the expansion. While this may allow a user to write exparsieith unexpected
consequences, it gives the expansions a broader rangeditfledsinctionalities.

A disadvantage to our solution is that expansions are a thetaetic con-
struct and as such are not visible in the underlying gramnaanéwork itself. By
the time OpenCCG sees the grammar, all expansions have pd@® and there
is no record of how the expanded structures were constructéds, it may be
hard to debug a problem occurring in a group of deeply nestpdresions, and
injudicious use of expansions can lead to quite obfuscaidd.c

A simplified version of an expansion contained in Figure 4iigeg in (6).
It defines a parameterized expansion namegh, with two formal parameters
stem andgend. Calling this expansion withoun(gaago, anim) produces the
expanded text given in (7).

(6) def noun(stem, gend) { (7) word gaago:N {
word stem:N { gaago: 3rd sg prox anim;
stem: 3rd sg prox gend,; gaagon: 3rd sg obv anim;
stem.n: 3rd sg obv gend,; gaagog: 3rd pl prox anim;
stem.g: 3rd pl prox gend; gaagong: 3rd pl obv anim;

stem.ng: 3rd pl obv gend;
1

noun(gaago, anim)
Occurrences of formal parameters inside of the expandeédhée been replaced
with their actual values, and strings separated by a peawd heen concatenated.

6.2 Nested expansions for complex morphology

Expansions in conjunction with word declarations make #ye@ express arbi-
trarily complicated morphology. They are used extensiuelotCCG grammars.
Expansions can be nested inside of each other withoutatstrj allowing almost
any pattern of syncretism to be factored out with little orepetition.

As an example, a large fragment of Classical Arabic, inclgdill noun, verb,
adjective and pronoun morphology and correct handling sifmgtive pronouns in
relative clauses, was implemented in an 800-loeg file (about 20% of which is
comments). It produces a vocabulary with more than 1100 svoFthe following
portion shows how some of the complexities of present-tgades can be handled:

°To help alleviate thisccg2xml provides options to debug expansion problems, such as dis-
playing the text after expansion processing.

Arabic verb fragment. We are omitting a great deal: dual num ber,
jussive mood, all past tense forms, doubled verbs, etc.

All present-tense verbs can be reduced to four forms (five, counting the
dual), plus prefixes.

def gen-pres(mood, fsing, fsing-fem, fplur-masc, fplur-f em) {
A special phonological rule collapses adjacent glottal st ops: e.g.
_a_kulu -> _aakulu. We implement using regsub() -- see belo w.

_ . regsub(([aiu])_’, "\1\1’, fsing): pres, mood, 1st, sg ;
t.fsing: pres, mood, 2nd, m, sg;

t.fsing-fem: pres, mood, 2nd, f, sg;

y.fsing: pres, mood, 3rd, m, sg;

t.fsing: pres, mood, 3rd, f, sg;

n.fsing: pres, mood, 1st, pl;
t.fplur-masc: pres, mood, 2nd, m, pl;
t.fplur-fem: pres, mood, 2nd, f, pl;
y.fplur-masc: pres, mood, 3rd, m, pl;
y.fplur-fem: pres, mood, 3rd, f, pl;

}

Most verbs can be reduced to two stems (one for feminine plur al and one
for all other cases), with a specific set of endings, which v ary between
indicative and subjunctive.

def two-form-pres-indic(formv, formc) {

gen-pres(indic, formv.u, formv.iina, formv.uuna, formc. na)
}
def two-form-pres-subj(formv, formc) {

gen-pres(subj, formv.a, formv.ii, formv.uu, formc.na)

}

The basic Arabic verb conjugations are strong, second-wea k, doubled, and
third-weak. Strong verbs have one stem, while second-weak and doubled
(not included here) have two. Second-weak verbs have many s ubtypes, so

we require that each verb give both stems.

def strong-pres(form) {
two-form-pres-indic(form, form)
two-form-pres-subj(form, form)

}

def 2nd-weak-pres(formv, formc) {
two-form-pres-indic(formv, formc)
two-form-pres-subj(formv, formc)

}
Third-weak verbs merge stem and endings, and have three sub types, ending
in -aa, -ii, or -uu in the base form.

def 3rd-weak-pres-aa(form) {
gen-pres(indic, form.aa, form.ayna, form.awna, form.ayn a)
gen-pres(subj, form.aa, form.ay, form.aw, form.ayna)

def 3rd-weak-pres-ii(form) { ... } # Omitted to save space

def 3rd-weak-pres-uu(form) { ... } # Omitted to save space

Here we provide expansions for the various conjugations. (These are

appropriate for a full verb paradigm, including both prese nt and past
tense, but the past-tense expansion has been commented out .) Each lexical
entry specifies the past-tense stem (which is used to form t he verb’s

"dictionary form"), some properties (valency and English translation), a

present-tense stem, and any other required info. Second-w eak verbs have
two stems for each of present and past, while third-weak ver bs specify
the past (ay/awl/ii) and present (ii/uu/aa) subtypes.

def strong-verb(past, props, pres) {
word past: props {
strong-pres(pres)
}
}
def 2nd-weak-verb(pastv, props, pastc, presv, presc) {
word pastv: props {
2nd-weak-pres(presv, presc)

}

def 3rd-weak-verb(past_stem, props, past_type, pres_ste m, pres_type) {
word past_stem . past_type: props {
Note how we are dynamically constructing the expansion cal I!
3rd-weak-pres- . pres_type(pres_stem)

}

}
Here we declare the actual verbs. These are identical to how they appear
in the full grammar, where each one expands to 52 individual forms.

strong-verb(katab, TransV(pred=write), aktub)
2nd-weak-verb(kaan, TransV(pred=be), kun, akuun, akun)
3rd-weak-verb(_a9T, DitransV(pred=give), ay, u9T, ii)

Note that Arabic verbs are formed in a complex fashion invngvprefixes,
suffixes, and internal stem changes. In general, there Hesedlit stems for past
and present, and many verbs have two stems in each tensending®also vary
in complicated ways among different moods and classes. 8yutticious use of
nested expansions, however, we can reduce each lexicgldenin to a very small
size, where only the class and underivable stem forms asngi¥he following
table shows the indicative and subjunctive moods genefatetthe three sample
verbs: kataba‘write’ (strong verb), kaana‘be’ (2nd-weak verb; note the short
vowel inyakunnd, and’a9Taa‘give’ (3rd-weak verb).

kataba.IND kataba.SBJ kaana.IND kaana.SBJ ’'a9Taa.IND Taa$BJ
Isg aktubu "aktuba "akuunu "akuuna 'a9Taa 'a9Taa
2sg.m | taktubu taktuba takuunu takuuna ta9Taa ta9Taa
2sg.f | taktubiina taktubii takuuniina takuunii ta9Tayna ta9Tay
3sg.m | yaktubu yaktuba yakuunu yakuuna ya9Taa ya9Taa
35?.f taktubu taktuba takuunu takuuna ta9Taa ta9Taa
1p naktubu naktuba nakuunu nakuuna na9Taa na9Taa
2pl.m | taktubuuna taktubuu takuunuuna takuunuu ta9Tawna ta9Taw
2pl.f taktubna taktubna takunna takunna ta9Tayna ta9Tayna
3pl.m | yaktubuuna yaktubuu yakuunuuna yakuunuu ya9Tawna ya9Taw
3pl.f yaktubna yaktubna yakunna yakunna ya9Tayna ya9Tayna

6.3 Expansions and built-in functions

Expansions are made even more powerful by three built-iramsipn functions,
which provide the full power of regular-expression matchend replacement.
r egsub(PATTERN, REPLACEMENT, TEXT) returns TEXT, but with all oc-
currences of PATTERN (a regular expression) replaced wEHPRACEMENT

(a standard regular expression substitution expressiafyding backreferences

to captured text)i f mat ch(PATTERN, TEXT, IF-TRUE, IF-FALSE) matches
regular expression PATTERN against TEXT, returning IF-ERit matches and
IF-FALSE otherwise.i f mat ch- nocase functions similarly, but the matching is
case-insensitive.

An example of the usage of these functions is computing Engliurals:

(8) def pluralize(word) {
ifmatch(”. * [aeiou][oy]\$’, Word, Word . s,
ifmatch(”. * ([sxoy]|sh|ch)\$’, Word,
regsub("(. «)Y\$', \1i", Word) . es,
Word . s))}

This definition handles botts and-esendings, including words ending witk. It
will correctly mapcat, box, boy, ladynto cats, boxes, boys, ladieagspectively.

Expansions in combination witlegsub can also be used to handle complex
cases such as infixation in Tagalog, where verbs can take omhar of different
voice affixes that single out a particular participant in eerg (Kroeger, 1993). For
example, the sterhili ‘buy’ can take the inflected formtsumili (actor),binili (ob-
ject), binilhan (dative),ipinambili (instrumental)jbinili (benefactive), anédabibili
(recent-perfective). The following DotCCG fragment demstoates this, breaking
the stem into two parts to allow for infixation and usiegsub to handle redupli-
cation inkabibili and the deletion afand insertion of in binilhan:1°

(9) def reduplicate (Word) { regsub("(.)(. *)$, \1\1\2, Word) }
def regular_verb (St1, St2, LF) {

Stl . um . St2 :VerbAV (pred=LF);
Stl . in . St2 ‘VerbOV (pred=LF);
Stl . in . regsub("(. *)i$, \1h’, St2) . an :VerbDV (pred=LF);
ipinam . St1 . St2 :VerblV (pred=LF);
i . Stl . in . St2 ‘VerbBV (pred=LF);
ka . reduplicate(Stl . St2) :VerbRP (pred=LF);

}

regular_verb (b, ili, buy);

6.4 Expansions for inheritance-like effects

In grammar engineering, inheritance is often used to elteimedundancy by al-
lowing partial definitions to be used as a base upon whiclhéuartiefinitions are
built. Inheritance (including defaults) is in fact one oétbore aspects of the LKB
system (in that it uses the Type Description Language) walichivs complex lin-
guistic signs to be built elegantly with a series of incretakdeclarations using
inheritance. Villavicencio (2002) utilizes inheritancethe LKB to create a cate-
gorial grammar which defines the transitive verb and seialerdmplement cate-
gories as extensions of the intransitive verb categorauitives as extensions of
transitives, and so on.

Tagalog verbal morphology in general is of course much moneptex than for this one stem,
but this shows in principle how such patterns can be captured

OpenCCG does not provide support for inheritance in genbralthe XML
format does provide special declarations to allow the iitdnece patterns used by
Villavicencio (Baldridge, 2002). Interestingly, expamss provide an alternative
way to achieve this effect:

(10) def iv_cat (PostSyn, MoreSem) {

s[E] \ np[X nom] PostSyn: E(* <Subject>X MoreSem)

}
def tv_cat (PreSyn, PostSyn, MoreSem) {

iv_cat(PreSyn / np[Y acc] PostSyn, <DirectObject>Y MoreSe m)

}
family IntransV(V) {
entry: iv_cat(,);

}
family TransV(V) {
entry: tv_cat(,,);

family DitransV(V) {
entry: tv_cat(, | np[Z acc] , <IndirectObject>Z);
entry: tv_cat(/ pp[Z acc] , , <IndirectObject>Z);

}

This shows the declaration of a parameterized expansiomrat , which defines

a category (and its semantics) while leaving variables elade in it that allow
further syntactic and semantic arguments to be added.tThmat definition in
turn builds oniv _cat , allowing arguments to be inserted either before or after
the direct object. Th®itransV family makes use of this, providing entries that
implement both double-object and PP-shifted forms of adsitive verb.

An important aspect of OpenCCG that supports this sort cdritdnce in the
semantics is the use of hybrid logics (Baldridge and Kru@@02) for representing
logical forms as a flattened set of elementary predicatibns.

Expansions provide a very flexible means to generalize ngttaw words are
defined (morphology), but also how categories are congtiucthe space savings
(in terms of the amount of grammar code which a grammar ebegiseonfronted
with) can be orders of magnitude in size: for example, the @8CG lines given
above translate into 200+ (harder to maintain) lines in @&G's XML.

Of course, constructing words and categories in this wayneake it difficult
to see exactly what the lexicon looks like directly in DotCO@CCG, described
in detail in the next section, is able to display—at varicexgels of granularity—
the resulting lexicon, both the words and the categorigsaiieeavailablewhile the
grammar is being edited for faster development and debgggin

7 VisCCG: wiki-style GUI editing

DotCCG provides a great deal of power to the grammar enginitleror without a
GUI. However, for many users, a GUI is still an important mefor using a gram-
mar platform effectively, and visualization can help eviee advanced developer

similar representations, e.g. Minimal Recursion Semantiould work equally well in this
regard.

VisCCG Editor: tinytiny.ccg

Lexicon Testbed Features Words Rules Save Help Quit

Validate
68 FREERSEEERRERAAEAF Categories #EERREREEERRREREE
69
70 family Det(indexRel=det) ({

71 entry np<i>[X PERS=3rd] /" n<i2>[X]:
72 X:sem-obj(<det>*);
73 F

T4

75 family W {

76 ENtry: n<Z>[X]:]
77 X:sem=0bj(*); r
78| .k
79

&0 family Pro {

"1 entry: np<i=[X]:

a2 X:sem-obj(*); -
83 | } 3
a4 4

[Error at Line 71: Syntax error at "<’

Figure 5: Debugging with CCG

see the structure and definitions of a grammar more effégtivdsCCG takes a
wiki-like approach, which enables grammar visualizationile/never taking the
developer too far from the underlying definitions. The gaeala allow new users
to begin using the system very quickly without constrairémilyanced users within
the bounds of purely-graphical editing (as opposed to &bditing in conjunction

with visualization).

When starting new grammars, it is often useful to iron outnwea of the lex-
icon, rules or morphology before expanding the grammarifgigntly. VisCCG
allows users to begin with a few essential aspects such es and features and
then visualize and debug them even without a complete graumrhé adheres to
the software engineering paradigm of rapid applicationettgyment. Individual
sections can be edited and visualized independently, emtathe maintainability
of the grammars.

VisCCG allows the user to begin a new grammar with a templetedrganizes
the modules of the grammar. This simplifies bootstrappingrafnmar develop-
ment and also helps maintain a de facto standard for granaeaetoped using the
system — though users are free to deviate from it if they widbre importantly,
as the grammar evolves over time with perhaps multiple geoghtributing to and
refining the grammar, the subsection to be edited is easibfiled.

IDEs for programming languages provide detailed debuggifaymation for
syntax errors in source code. Similarly, VisCCG identifigatax errors in the
DotCCG source and highlights them for users to fix, as ilaistt in figure 5.

VisCCC Editor: tinytiny.ccg

Lexicon Testbed Features Words Rules Save Help Quit

Show feature ID's ¥ Show features Full-form features ¥ Show semantics

DEt I np);.Srd /<> n)(: G'D};.-;c--r ;::({DE‘T}*}
N n'x : @2\ 521 ::‘-£$}

Pro np): : @3(_-;0-| :L:t*}

| [- - s |
lufrans¥ | Sepssc\gMPxnem * Gescion” " <ACTOR> taniissang 3

X:sem-obij(*);
¥
family Fro {
entry: np<2>[X]:
X:sem-obj(*);
}

family Intransv{v) {
entry: s<1>[E past] \ np<Z>[X nom]: "

Figure 6: Local editing in Lexicon mode. THero family has been selected for
editing from the graphical display (the top pane); this aptire grammar file for
editing at the location which specifies the family (the lowane).

The line numbers displayed beside the source help localideisolate individ-
ual errors. This capability alone dramatically improveselepment time, even for
experienced developers.

The visualization of a grammar is often very different frorhawe can ex-
press in text. VisCCG enables users to view the grammar &ugievels of
granularity, allowing the user to spot errors and geneatibns easily and with-
out needing to view unrelated information, such as detdileaiures or semantics.
As with wikis, VisCCG allows a user to locally edit a small paf the grammar.
This is made possible by the terseness of DotCCG, whichf iisehade possi-
ble by the fact that CCG categories can be concisely spedifiadinear format.
VisCCG additionally allows editing to occur while the usentinues to view the
graphical representation of the grammar. This featurevallseamless editing of
one category definition in the ‘Lexicon’ tab while other qgides are visualized
at the desired granularity. Also, the results of such anadiimmediately visible,
allowing the user to try out various features before savimnges. An example of
editing the ‘Pro’ family is illustrated in Figure 6.

VisCCG has many different modes of visualization. Theahgicreen is a basic
editor that allows the user to develop their grammar froratstr. The ‘Testbed’ tab
also the user to input new test sentences, and the ‘Featitr@rovides a straight-
forward means of editing the feature hierarchy. The ‘Wotdb'lists all available
lexical items as well as their various inflected forms. Thkig$pecially useful for
checking the output of expansions, and in particular expasswhich produce
words based on stems and morphological regularities. Tétisset of capabilities

enables the user to update the grammar with a tight editidyy&ualization cycle.
These capabilities also ease the process of grammar devetdby allowing the
user to focus on particular sections, while being able tdcwback to any other
view easily.

8 Uses of and resources for DotCCG and VisCCG

VisCCG has been used so far in both graduate and undergeadaates to teach
both CCG and grammar engineering. Even students withdittheputational back-
ground were able to use the tools effectively with just alsihgb session. Previ-
ous courses that used the XML format proved it to be frustgator students, and
required many sessions for them to use at all (and certawtlymaster). This ex-
perience was in fact the genesis of DotCCG.

For teaching purposes and to facilitate wider use of VisC®&have devel-
oped a wik#? which focuses on the various computational and linguistiources
available for learning to use and for using the system. Thesmurces include tuto-
rials, links to software download sites, and access to a eawitgrammars which
have been developed using VisCCG. Among these are smallgiy wases tiny)
grammars for Tagalog, Ojibwe, French, and Hungarian, as asefome small-
domain English grammars. Though no truly broad-coveragengrar has been
developed with our new tools to date, they are already besed to develop gram-
mars used in some of the projects listed in Figure 2, inclydidaRTE, INDIGO,
and Methodius.

We see a number of interesting directions for developmenheftools dis-
cussed in this paper. In addition to refining the presemntaifdhe various compo-
nents of the grammar, it would be extremely useful to be abtan the OpenCCG
parser from inside VisCCG. It would also be interesting tpaad the grammar ini-
tialization process to include something like the custatiin questionnaire used
in the Grammar Matrix (Bender and Flickinger, 2005).

9 Conclusion

We have presented an overview and motivation of our work at afgools for im-
proving grammar engineering for OpenCCG. The approachagarenged in that
it improves textual representations of CCG grammars vidibw€CG format and
it allows the information in such grammars to be visualizéthWisCCG. VisCCG
furthermore supports wiki-style editing that enables siseredit small sections of
the grammar while visualizing the rest and to see the restittseir edits immedi-
ately. However, the use of VisCCG for editing is optional +OGG grammars can
be edited with any plain-text editor as well. The simplicitgxibility and power

http://comp.ling.utexas.edu/wiki/doku.php/openccg

of DotCCG and the optional availability of VisCCG is crucfal supporting the
needs of both new and advanced users.

References

Baldridge, Jason. 2002exically Specified Derivational Control in Combinatory
Categorial GrammarPh. D.thesis, University of Edinburgh.

Baldridge, Jason and Kruijff, Geert-Jan. 2003. Multi-Mb@ambinatory Catego-
rial Grammar. InProceedings of EACLBudapest, Hungary.

Baldridge, Jason and Kruijff, Geert-Jan M. 2002. CouplirigGCand Hybrid Logic
Dependency Semantics. Rroceedings of ACL

Becker, Tilman, Blaylock, Nate, Gerstenberger, Cipriaryiff-Korbayov, Ivana,
Korthauer, Andreas, Pinkal, Manfred, Pitz, Michael, Pplieeter and Schehl,
Jan. 2006. Natural and intuitive multimodal dialogue focar applications: The
SAMMIE system. InProceedings of the ECAI Sub-Conference on Prestigious
Applications of Intelligent Systems (PAIS 2008iva del Garda, Italy.

Bender, Emily M. and Flickinger, Dan. 2005. Rapid Prototygpof Scalable Gram-
mars: Towards Modularity in Extensions to a Language-ledepnt Core. In
Proceedings of the 2nd International Joint Conference onulN# Language
Processing IJCNLP-05 (Posters/Dema3gju Island, Korea.

Benzmilller, Christoph, Horacek, Helmut, Kruijff-Korbaya, lvana, Pinkal, Man-
fred, Siekmann, Jorg and Wolska, Magdalena. 2007. Nalaadjuage Dialog
with a Tutor System for Mathematical Proofs. In Rugian LargJSiekmann and
Carsten Ullrich (eds.)ognitive Systemsolume 4429 oL NAI, Springer.

Bierner, Gann. 200JAlternative Phrases: Theoretical Analysis and Practicat A
plications Ph. D.thesis, Division of Informatics, University of E@urgh.

Bos, Johan, Clark, Stephen, Steedman, Mark, Curran, JanaxlRlockenmaier,
Julia. 2004. Wide-Coverage Semantic Representations &@&CG Parser. In
Proceedings of COLING-Q4ages 1240-1246.

Bozsahin, Cem, Kruijff, Geert-Jan M. and White, MichaeQ08. Specifying
Grammars for OpenCCG: A Rough Guide. http://openccg 8f.ne

Butt, Miriam, King, Tracy Holloway, Nifo, Maria-Eugeniand Segond,
Frédérique. 1998\ Grammar Writer's CookboolStanford, CA: CSLI.

Clark, Stephen and Curran, James. 2007. Wide-Coveragéchtfistatistical Pars-
ing with CCG and Log-Linear Model€omputational Linguistic83(4).

Copestake, Ann. 2002mplementing Typed Feature Structure Gramm&tan-
ford, CA: CSLI Publications.

Doran, Christine, Hockey, Beth Ann, Sarkar, Anoop, SrigjvB. and Xia, Fei.
2000. Evolution of the XTAG System. In Anne Abeillé and OviRambo (eds.),
Tree Adjoining Grammars: Formalisms, Linguistic Analyaisd Processing
pages 371-404, Stanford, CA: CSLI Publishing.

Foster, Mary Ellen and White, Michael. 2005. Assessing thpaict of adaptive
generation in the COMIC multimodal dialogue system Pimceedings of the
IJCAI 2005 Workshop on Knowledge and Reasoning in Pracbéalogue Sys-
tems Edinburgh.

Foster, Mary Ellen and White, Michael. 2007. Avoiding refiet in generated
text. InProceedings of ENLESchloss Dagstuhl.

Gerstenberger, Ciprian-Virgil and Wolksa, Magdalena.320@troducing Topo-
logical Field Information into CCG. IProceedings of the 10th ESSLLI Student
Sessionpages 62—74, Edinburgh, UK.

Hockenmaier, Julia. 2003. Parsing with Generative ModeRredicate-Argument
Structure. InProceedings of ACL

Hockenmaier, Julia, Bierner, Gann and Baldridge, Jasddd.ZBxtending the cov-
erage of a CCG SysterResearch in Language and Computatiyrl65—-208.

Hockenmaier, Julia and Steedman, Mark. 2007. CCGbank: Ausoof CCG
Derivations and Dependency Structures Extracted from #nenPTreebank.
Computational Linguistic83(3), 355—-396.

Isard, Amy. 2007. Choosing the Best Comparison Under theuBistances. In
Proceedings of the International Workshop on PersonatipaEnhanced Access
to Cultural Heritage (PATCHO7)Corfu, Greece.

Isard, Amy, Brockmann, Carsten and Oberlander, Jon. 20@fvitiuality and
Alignment in Generated Dialogues. Rroceedings of INLG-Q@ages 22—-29.

Kaplan, R. M., Maxwell, J. T., King, T. H. and Crouch, R. S. 20(ntegrating
Finite-state Technology with Deep LFG GrammarsPhoceedings of Combin-
ing Shallow and Deep Processing for NLP, ESSLLI 2004

Kroeger, Paul. 1993Phrase Structure and Grammatical Relations in Tagalog
Stanford: CSLI Publications.

Kruijff, Geert-Jan and Baldridge, Jason. 2004. GenerajiZDimensionality in
Combinatory Categorial Grammar. Rroceedings of COLING-04

Kruijff, Geert-Jan M., Zender, Hendrik, Jensfelt, PatnclaChristensen, Henrik |.
2007. Situated Dialogue and Spatial Organization: Whatelh .and Why?
International Journal of Advanced Robotic Systel(®).

Moore, Johanna D., Foster, Mary Ellen, Lemon, Oliver andté/iichael. 2004.
Generating tailored, comparative descriptions in spokatogue. InProceed-
ings of FLAIRS 2004Miiami Beach.

Nakatsu, Crystal and White, Michael. 2006. Learning to Sayell: Reranking
Realizations by Predicted Synthesis Quality.Aroceedings of COLING-ACL
2006

Rickert, Markus, Foster, Mary Ellen, Giuliani, Manuel, Bgmas, Panin, Giorgio
and Knoll, Alois. 2007. Integrating language, vision antiacfor human robot
dialog systems. IiProceedings of HCI International 200Beijing.

Rojas-Barahona, Lina M. 2007. Adapting Combinatory Catefjérammars in
a Framework for Health Care Dialogue SystemsPhoceedings of the 11th
Workshop on the Semantics and Pragmatics of Dialogue (DEZAROQ7)
pages 187-188.

Steedman, Mark. 2000’he Syntactic ProcesMIT Press/Bradford Books.

Steedman, Mark and Baldridge, Jason. To appear. Combyn@tttegorial Gram-
mar. In Robert Boersley and Kersti Borjars (edilpntransformational Syntax:
A Guide to Current Mode|Blackwell.

Villavicencio, Aline. 2002.The Acquisition of a Unification-Based Generalised
Categorial GrammarPh. D.thesis, University of Cambridge.

White, Michael. 2006a. CCG Chart Realization from Disjivetinputs. InPro-
ceedings of INLG-06

White, Michael. 2006b. Efficient Realization of Coordin&teuctures in Combina-
tory Categorial GrammaResearch on Language and Computatigh), 39-75.

White, Michael and Baldridge, Jason. 2003. Adapting ChadlRation to CCG.
In Proceedings of ENLG

White, Michael, Rajkumar, Rajakrishnan and Martin, Sc2@07. Towards Broad
Coverage Surface Realization with CCG.Pnoceedings of the Workshop on
Using Corpora for NLG: Language Generation and Machine Hlation (UC-
NLG+MT), Copenhagen.

Wolska, Magdalena and Kruijff-Korbayova, lvana. 2004 adysis of Mixed Natu-
ral and Symbolic Input in Mathematical Dialogs. Pmoceedings of ACLpages
25-32.

Zettlemoyer, Luke and Collins, Michael. 2007. Online Laagnof Relaxed CCG
Grammars for Parsing to Logical Form. Proceedings of EMNLP-CoNLL
2007.

