
DotCCG and VisCCG: Wiki and Programming Paradigms for
Improved Grammar Engineering with OpenCCG

Jason Baldridge†, Sudipta Chatterjee‡,
Alexis Palmer†, and Ben Wing‡

†Dept. of Linguistics,‡Dept. of Computer Science

University of Texas at Austin

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We present a suite of tools for simplifying the creation and maintenance
of grammars for the OpenCCG parsing and realization system.The core of
our approach relies on a terse but expressive textual format, DotCCG, for
declaring CCG grammars. It supports powerful string expansions that allow
grammar developers to eliminate redundancy in the declaration of both mor-
phology and category definitions. Grammars written in this format are con-
verted into the XML utilized by OpenCCG using theccg2xml utility, which
–like a programming language compiler– provides information regarding er-
rors in the grammar, including the type of error and the line number on which
it occurs. DotCCG grammars can be edited with VisCCG, a graphical inter-
face which provides visualization of various components ofthe grammar and
allows local editing of information in a manner inspired by wikis. We also
report on resources developed to facilitate wide use of the OpenCCG tool
suite presented in this paper and on recent uses of the tools in both academic
research and classroom environments.

1 Introduction

A major challenge of grammar engineering is enabling users with little computer
experience to create complex grammars. Many users encounter significant obsta-
cles and easily get frustrated by trivial syntax errors and non-intuitive formats. At
the same time, more experienced users can feel needlessly constrained by grammar
engineering aids designed for novice users. Such frustrations slow users down and
can result in a focus on mechanics more than on the grammar itself.

This paper presents two contributions for improving current practice in gram-
mar engineering. First, it provides a terse but expressive format for declaring Com-
binatory Categorial Grammars (CCG) (Steedman, 2000; Steedman and Baldridge,
To appear) that utilizes ideas from software engineering for reducing redundancy in
CCG grammars. The basic idea is general enough to be used withother formalisms.
Second, it describes a wiki-inspired editing interface, VisCCG, that supports gram-
mar visualization while allowing users to directly edit plain text grammars.

The core motivation for these developments is to improve thegrammar de-
velopment cycle for OpenCCG (openccg.sf.net) (Hockenmaier et al., 2004;
Baldridge and Kruijff, 2002; White and Baldridge, 2003), a parsing and realization
system that uses CCG, and to provide a model for facilitatinggrammar develop-
ment for both novice and expert grammar writers. OpenCCG haslong lacked such
an environment despite its use in a number of projects. Grammars developed with
VisCCG are compiled into OpenCCG’s native XML format, much in the same

†We would like to thank Emily Bender, Fred Hoyt, Geert-Jan Kruijff, Mark Steedman, Michael
White, students in Jason Baldridge’s categorial grammar, computational syntax, and computational
linguistics courses at UT Austin in 2006/7, and the participants of the GEAF 2007 workshop for
valuable feedback. This research was supported by a LiberalArts Instructional Technology Grant
from the University of Texas at Austin.

manner as wiki pages produce HTML. The goal is to create a grammar engineer-
ing environment for CCG that is both easy tolearn to use and easy to use.

We begin by motivating our work in the context of OpenCCG as well as other
grammar engineering platforms. In section 4 we then briefly introduce CCG and
OpenCCG and some of the problems with OpenCCG’s native XML grammar for-
mat. Section 5 discusses DotCCG, followed by an extensive discussion of its pa-
rameterized macro mechanisms in section 6. Then we present VisCCG and con-
clude with a brief discussion of uses of our tools and resources for developing
OpenCCG grammars.

2 Motivation

A graphical user interface (GUI) was developed for Grok, OpenCCG’s predeces-
sor, but development was ceased as the parsing system itselfwas improved (see
Bierner (2001) and Baldridge (2002) for specific reference to Grok). Developing
grammars for OpenCCG has since involved working with unwieldy XML specifi-
cations. Our work was initiated to address this (rather large) gap in CCG grammar
development.1 Several aspects of our approach are novel and may be useful inthe
context of work in other formalisms and/or grammar engineering environments.

The schism between computational definitions and the grammar they are sup-
posed to express has been addressed in various ways, with visualization being a
common strategy for more intuitive representations of the grammar. One approach
is to develop a GUI for editing objects such as trees and feature structures, such
as that of the XTAG system (Doran et al., 2000). The XTAG system included a
graphical tree-drawing editor which allowed the user to attach features and labels
to nodes of a tree. In such systems, grammar developers usually do not work with
the underlying code. A high-level approach like that of the XTAG tree editor is
friendly for novice users but can be frustratingly restrictive for experienced users.

An alternative is to develop grammars by working with a low-level format and
then visualizing them with a separate GUI whichdisplaysinformation. For ex-
ample, the LKB system (Copestake, 2002) provides extensive, highly configurable
displays of various components of grammars written in the Type Description Lan-
guage. The display functionality in the XLE system for grammar development in
the Lexical-Functional Grammar framework (Butt et al., 1998) is similarly infor-
mative and configurable. In such systems, however, the developer cannot directly
edit the grammar using the GUI. Instead, the plain text grammar is edited and then
reloaded to view the effect of the modifications in the graphical representation.

An interesting compromise between visualization and low-level specification
can be observed with the use of wikis for creating web content. HTML and XML
are cumbersome and unintuitive formats; wiki notation as analternative has en-

1Concurrently with our work, Scott Martin and Michael White at Ohio State University developed
a complementary tool calledgrammardoc which produces a set of HTML pages for visualizing
OpenCCG grammars. Bothgrammardoc and our tools are distributed with the OpenCCG system.

1 pay ** close ** attention wiki syntax
2 pay close attention HTML syntax
3 paycloseattention display

Figure 1: Wiki-style notation as shorthand for HTML

abled lay users to create web content quickly and effectively. For example, in one
common wiki syntax, boldfaced text is indicated with doubleasterisks around the
text. This shorthand (Figure 1, line 1) is then converted into HTML (line 2) and
displayed as boldfaced text (line 3). Wikis also make it easyto edit small portions
of documents while visualizing the rest, and they provide immediate feedback on
the visual outcome of edits. DotCCG provides a similar shorthand notation for
OpenCCG’s XML, and VisCCG provides user-friendly visualization and editing.

Software engineering provides another source of ideas for improving grammar
engineering. Most grammar specifications can be viewed as programming lan-
guages particularized to natural language, yet grammar platforms typically do not
provide much support for error checking and error messages.Ourccg2xml utility
compiles DotCCG to OpenCCG’s XML and supports such checkingin the process,
while VisCCG provides feedback in real-time (during editing).

Integrated Development Environments (IDEs) for programming languages can
be used to improve productivity for many developers. A key property of IDEs is
that they are optional – a developer may use a plain text editor to write programs if
they wish. We see VisCCG in this light. It is particularly useful for those who are
creating their first grammars. In the classroom setting, we observed that users with
less experience working with computers tend to stick with editing their grammars
using VisCCG, but many others –particularly those with programming experience–
switch over to their favorite text editor (e.g. Emacs or Vi) once they understand the
DotCCGformat. The latter would still periodically load their grammars in VisCCG.
We see this availability of choice as a highly desirable feature of the new tools we
have developed for OpenCCG: the DotCCG format,ccg2xml , and VisCCG.

3 Combinatory Categorial Grammar

CCG is a lexicalized grammar formalism that has attracted both linguistic and com-
putational interest. It has a universal rule component thatdrives the combination
of categories and their semantics to provide compositionalanalyses for sentences.
Categories may be either atomic elements or (curried) functions which specify the
canonical linear direction in which they seek their arguments. Some simplified
example lexical entries are given below:

Olivia := np

Finn := np

plane:= n

the := np/⋆n
saw:= (s\np)/np

thinks:= (s\np)/⋄s

The most basic rules are forward (>) and backward (<) application. CCG also
utilizes rules based on the composition (B), type-raising (T), and substitution (S)
combinators of combinatory logic. The rules of CCG are:2

(>) X/⋆Y Y ⇒ X (<) Y X\⋆Y ⇒ X

(>B) X/⋄Y Y/⋄Z ⇒ X/⋄Z (<B) Y\⋄Z X\⋄Y ⇒ X\⋄Z
(>B

×
) X/×Y Y\×Z ⇒ X\×Z (<B

×
) Y/×Z X\×Y ⇒ X/×Z

(>T) X ⇒ Y/(Y\X) (<T) X ⇒ Y\(Y/X)
Each rule is keyed to a modality; this allows lexical items toselectively utilize
some rules but not others. For example, the/⋆ slash on the category forthekeeps
the composition rules from causing ungrammatical word order permutations within
English noun phrases. See Baldridge (2002) and Baldridge and Kruijff (2003) for
full explication of the computational and linguistic significance of modalities.

Though the application rules do the majority of the work, theothers are cru-
cial for building the non-standard constituents for which categorial grammars are
well-known. With these rules and the categories given above, we can provide an
incremental derivation for a sentence such as ‘Finn thinks Olivia saw the plane’:

Finn thinks Olivia saw the plane

np (s\np)/⋄s np (s\np)/np np/⋆n n
>T >T >

s/(s\np) s/(s\np) np
>B

s/⋄s
>B

s/(s\np)
>B

s/np
>

s
The constituents/np derived above for ‘Finn thinks Olivia saw’ is also used in
analyses for relative clauses like ‘the plane that [Finn thinks Olivia saw]’ and right-
node raising sentences like ‘[Kestrel heard] and [Finn thinks Olivia saw] the plane’.

There has been a great deal of work in computational linguistics using CCG
over the past two decades, and there is an even greater degreeof activity in recent
years. A major development was the creation of CCGbank (Hockenmaier and
Steedman, 2007), which has allowed the creation of fast and accurate probabilistic
CCG parsers for producing deep dependencies (Hockenmaier,2003; Bos et al.,
2004; Clark and Curran, 2007). CCG has also been used to induce semantic parsers
from sentences paired with logical forms (Zettlemoyer and Collins, 2007).

Work with OpenCCG represents another major branch of CCG research. It is
used for testing and developing syntactic and semantic analyses (Bierner, 2001;
Baldridge, 2002; Kruijff and Baldridge, 2004; Gerstenberger and Wolksa, 2005)
and for research into CCG parsing and realization (Hockenmaier et al., 2004;
White and Baldridge, 2003; White, 2006b; White et al., 2007). It performs pars-
ing/realization in the systems of a number of projects, manyof which are given in
Figure 2. Most of these are dialog systems, including natural language interfaces
for robots (CoSy, JAST, and INDIGO) and MP3 systems (SAMMIE).

2We exclude substitution here for space reasons. An example is>S: (X/⋄Y)/⋄Z Y/⋄Z⇒ X/⋄Z.

Project References/Website
AdaRTE Rojas-Barahona (2007)

http://www.labmedinfo.org/research/adarte/adarte.ht m
COMIC Foster and White (2005, 2007); Nakatsu and White (2006);

White (2006a) http://www.hcrc.ed.ac.uk/comic/
CoSy Kruijff et al. (2007) http://www.cognitivesystems.org
CrAg Isard et al. (2006) http://www.hcrc.ed.ac.uk/crag/
DIALOG Wolska and Kruijff-Korbayová (2004); Benzmülleret al. (2007)

http://www.ags.uni-sb.de/ ∼dialog/
FLIGHTS Moore et al. (2004)
INDIGO http://www.ics.forth.gr/indigo/
JAST Rickert et al. (2007) http://www.euprojects-jast.net/
Methodius Isard (2007) http://www.ltg.ed.ac.uk/methodius/
SAMMIE Becker et al. (2006) http://www.talk-project.org

Figure 2: Example projects that use OpenCCG for parsing and realization.

4 OpenCCG’s XML Format

The underlying native specification format of OpenCCG is XML. Grammatical in-
formation is split across six interdependent files, some of which define components
that were directly inspired by XTAG (Doran et al., 2000). Each file defines a major
component of the grammar, including (a) a structured lexicon containing families
of lexical entries, (b) a morphological database pairing words with their stems and
morphological features, (c) morphological macros instantiating feature values on
lexical entries, (d) a hierarchy of typed features, (e) a setof parameterized CCG
rules, and (f) a testbed of sentences used for simple regression testing.

As an example of what is involved in creating lexical entriesin OpenCCG, Fig-
ure 3 shows a fragment of the XML lexicon, morphology, and typed-feature files
for an Ojibwe3 grammar. This fragment defines a noun family that has a singlelex-
ical category, which contains three lexical items:gaago‘porcupine’,kwe‘woman’,
andmzinig‘book’. Each lexical item inflects with four forms: singularproximate,
singular obviative, plural proximate, and plural obviative. The inflectional suffixes
vary according to the stem.Gaagoandkweare of animate gender, whilemzinig
is inanimate. A basic feature hierarchy is defined, consisting of person (2nd, 1st,
3rd, non3rd), number (singular, plural), gender (animate,inanimate), and obviation
status (proximate, obviative). Note that the majority of the XML for defining the
feature hierarchy has been truncated for space reasons.

Developing grammars directly in XML is time-consuming and error prone.
XML was designed as a format to standardize communication ofdata among com-
puters, not for direct editing by humans. Furthermore, OpenCCG’s XML for-
mat contains many redundancies and interdependencies, leading to errors when
a change is made in one place and not propagated elsewhere. For example, the
association between the part of speechN and the three lexical items is declared in
the lexicon file and in multiple places throughout the morphology file. The decla-
rations of multiple inflected forms of the same stem are also highly repetitive and
fail to express any generalizations over the forms. Finally, the features attached to

3Ojibwe is an Algonquian language of the upper Great Lakes region and southeastern Ontario.

Ojibwe lexicon file

<family name=‘‘N’’ pos=‘‘N’’ closed=‘‘true’’>
<entry name=‘‘Entry-1’’>

<atomcat type=‘‘n’’>
<fs id=‘‘1’’>

<feat attr=‘‘index’’>
<lf>

<nomvar name=‘‘X’’/>
</lf>

</feat>
</fs>
<lf>

<satop nomvar=‘‘X’’>
<prop name=‘‘[‘DEFAULT’]’’/>

</satop>
</lf>

</atomcat>
</entry>
<member stem=‘‘mzinigna’’/>
<member stem=‘‘gaago’’/>
<member stem=‘‘kwe’’/>

</family>

Ojibwe morphology file

<entry word=‘gaago’ macros=‘@3rd @sg @prox @anim’ pos=‘N’ stem=‘gaago’/>
<entry word=‘gaagon’ macros=‘@3rd @sg @obv @anim’ pos=‘N’ stem=‘gaago’/>
<entry word=‘gaagog’ macros=‘@3rd @pl @prox @anim’ pos=‘N ’ stem=‘gaago’/>
<entry word=‘gaagong’ macros=‘@3rd @pl @obv @anim’ pos=‘N ’ stem=‘gaago’/>
<entry word=‘mzinigna’ macros=‘@3rd @sg @prox @inan’ pos= ‘N’ stem=‘mzinig’/>
<entry word=‘mzinignan’ macros=‘@3rd @sg @obv @inan’ pos= ‘N’ stem=‘mzinig’/>
<entry word=‘mzinignag’ macros=‘@3rd @pl @prox @inan’ pos =‘N’ stem=‘mzinig’/>
<entry word=‘mzinignang’ macros=‘@3rd @pl @obv @inan’ pos =‘N’ stem=‘mzinig’/>
<entry word=‘kwe’ macros=‘@3rd @sg @prox @anim’ pos=‘N’ st em=‘kwe’/>
<entry word=‘kwewan’ macros=‘@3rd @sg @obv @anim’ pos=‘N’ stem=‘kwe’/>
<entry word=‘kwen’ macros=‘@3rd @pl @prox @anim’ pos=‘N’ s tem=‘kwe’/>
<entry word=‘kwenwan’ macros=‘@3rd @pl @obv @anim’ pos=‘N ’ stem=‘kwe’/>

<macro name="@anim">
<fs id="1" attr="GEND" val="anim"/>

</macro>
<macro name="@inan">

<fs id="1" attr="GEND" val="inan"/>
</macro>
...

Ojibwe typed-feature file

<type name="GEND"/>
<type name="anim" parents="GEND"/>
<type name="inan" parents="GEND"/>
<type name="OBV"/>
<type name="prox" parents="OBV"/>
<type name="obv" parents="OBV"/>

...

Figure 3: XML specifying an Ojibwe noun family containing three lexical items.

feature {
gend<1>: anim inan;
pers<1>: 1st 2nd 3rd;
num<1>: sg pl;
obv<1>: prox obv;

}

family N {
entry: n<1>[X]: X(*);

}

def noun(stem, obv-end, pl-end, gend) {
word stem:N {

stem: 3rd sg prox gend;
stem.obv-end: 3rd sg obv gend;
stem.pl.end: 3rd pl prox gend;
stem.obv-end.pl-end: 3rd pl obv gend;

}
}

noun(gaago, n, g, anim)
noun(mzinigna,n, g, inan)
noun(kwe, wan, n, anim)

Figure 4: DotCCG equivalent of the Ojibwe XML fragment givenin Figure 3.

inflected forms need to be declared both in the morphology andtyped-feature files.

5 DotCCG: shorthand for OpenCCG

DotCCG was created to overcome the deficiencies of direct XMLinput of gram-
mars.4 It is a human-friendly format which seeks to eliminate redundancy and
boost expressiveness while requiring far fewer lines of code than raw XML. It
was designed to be concise, flexible, and easy to use, and specifically intended
for direct input and editing using a text editor. The grammaris placed in a sin-
gle .ccg file, with declarations in any order and freely grouped or separated. All
of the XML required by OpenCCG is generated by passing the.ccg file through
ccg2xml , a program written in Python and implemented using PLY.5 Handling the
dependencies in this way greatly reduces the burden on the grammar developer and
increases the grammar’s modularity and maintainability. Figure 4 shows the full
DotCCG equivalent of the Ojibwe XML fragment.

DotCCG was designed with an emphasis on making the grammar specification
language as tolerant and expressive as possible. The general feel of DotCCG syntax
is like C, Java, or Perl. However, the syntax is very forgiving on the usage of com-
mas, semicolons, and other terminators and separators. In fact, this punctuation can

4An existing solution using XSLT transformations is available (Bozşahin et al., 2006) but requires
significant technical expertise.

5PLY, available athttp://www.dabeaz.com/ply/ , is a package that provides functionality
equivalent to Lex and YACC.

be omitted as long as no syntactic ambiguity will result.6 This eliminates one of
the major stumbling blocks grammar engineers typically face when adjusting to an
unfamiliar format. Although DotCCG looks similar to a traditional programming
language, the format is intended for use by non-programmersas well as program-
mers. Its semantics are on a higher level than most programming languages, and
it consistently favors expressiveness and ease-of-use over rigid formatting. It is le-
nient in its handling of commas and other punctuation, and most syntactic elements
can be omitted if not needed, with sensible default behavior.

The five sections of DotCCG grammars are described below. Each section is
implemented within the.ccg file with a series of declarations.

Features — Declaring features allows for simple specification of and refer-
ence to features in lexical entries and categories. For example, the Ojibwe gram-
mar fragment shown above creates a simple feature structurewith person, number,
gender and obviation features. The character in angle brackets following the name
of the feature is required by OpenCCG and relates to its mechanism for unifying
feature values across lexical categories. Features in DotCCG can also be nested
and allow for multiple inheritance.

Words — Word declarations associate lexical items with particular categories
and features as well as specifying morphological information. The following are
two examples for English, one showing a simple wordthe of family Det , and the
other showing a pseudo-wordpro1 of family Pro and semantic classanimate ,
with various surface realizations according to case and number:

(1) word the:Det;
word pro1:Pro(animate) {

I: 1st sg nom;
me: 1st sg acc;
we: 1st pl nom;
us: 1st pl acc; }

Word declarations are commonly placed inside of expansions, as in thenoun ex-
pansion in the Ojibwe fragment. See section 6 for further discussion.

Rules— This section specifies the rules allowed or disallowed in the particular
grammar. The CCG rules enabled by default are the forward andbackward vari-
eties of application, harmonic composition, and crossed composition. Substitution
rules must be invoked explicitly. OpenCCG supports the modalities of Baldridge
and Kruijff (2003), so the applicability of the rules is controlled by the use of these
modalities on slashes in categories.

Type-raising can be invoked and restricted to particular argument and result
categories. For example, the following declaration adds the rulenp ⇒ s$/(s$\np):

(2) typeraise + $: np => s;

Type-changing rules can also be added. The following would be one way of
implementing pro-drop in a grammar (sfin\npnom changes tosfin):

6The only situation where separators are required occurs in arguments to textual expansions,
which can consist of arbitrary text.

(3) typechange: s[finite]\np[nom] => s[finite] ;

Lexicon/Categories— Lexical families consist of one or more category declara-
tions and optional specification of lexical items which are members of that family.
For example, in English the lexical familyDet has just a single category:np/⋄n.
The family for dative alternation verbs, though, has two possible categories, one
for the double object construction and one for the pp-complement construction.

There are two types of intransitive verbs in Ojibwe, those with an animate
subject (VAI) and those with an inanimate one (VII). The category declarations
for these two families are shown below.7 Features are enclosed in square brackets,
and the final term, after the second colon, is the semantic representation.

(4) family VAI {
entry: s<8>[E] | n<1>[anim X]: E:action (* <actor>X:sem-obj); }

family VII {
entry: s<8>[E] | n<1>[inan X]: E:action (* <actor>X:sem-obj); }

Testbed— The testbed contains a list of constructions and the numberof parses the
grammar is expected to find for each construction. The testbed facility provides for
simple regression testing, e.g. whether the expected number of parses are obtained
and whether sentences can be reverse realized from their parse results.8

(5) testbed {
wiisniwag gaagog: 1; ## the porcupines eat
wiisniwag mzinignan: 0; ## * the books eat }

6 Expansions with DotCCG

6.1 Introduction to expansions

Most grammar engineering systems provide mechanisms to reduce redundancy.
These support the expression of various levels of generalization while providing
power and flexibility. For example, XLE has macros and parameterized rules, and
the LKB uses types to capture lexical and syntactic regularities. DotCCG offers
parameterized string-rewrite functions that we callexpansions.

We chose expansions as our primary abstraction mechanism because they are
flexible and easy to use. The definitions directly specify their expansions and mir-
ror what will be inserted and processed when an expansion call is made. The lack of
a need to “program” data makes expansions easy to use for non-programmers. Fur-
thermore, expansions can abstract overanyportion of a text, regardless of whether
such a usage was anticipated in the initial design of the grammar. A programmed
mechanism, by contrast, either has to impose a uniform structure on all specifica-
tions or have separate mechanisms to handle each type of structure.

7The numbers in angle brackets represent the feature structure ID assigned to the category. These
are global for the grammar: this is one of the main weaknessesof OpenCCG grammar specification.

8The sentences given here are not surface forms but rather idealizations of Ojibwe sentences prior
to phonological processes.

Our expansions are quite similar to XLE macros and parameterized rules, but
with greater syntactic flexibility, fewer constraints, andincreased string manipula-
tion capabilities. The expansions allow DotCCG to handle quite complex morphol-
ogy without having to interface with external morphological analyzers. Of course,
there are many advantages to interfacing with existing tools such as morphological
analyzers, and XLE grammars have been successfully interfaced with finite-state
analyzers (Kaplan et al., 2004). Along with the flexible syntax, of course, comes a
reduced level of control over expansions, for good and for ill. Unlike XLE, for ex-
ample, no error occurs if not all input arguments appear in the output specified for
the expansion. While this may allow a user to write expansions with unexpected
consequences, it gives the expansions a broader range of possible functionalities.

A disadvantage to our solution is that expansions are a meta-theoretic con-
struct and as such are not visible in the underlying grammar framework itself. By
the time OpenCCG sees the grammar, all expansions have takenplace, and there
is no record of how the expanded structures were constructed. Thus, it may be
hard to debug a problem occurring in a group of deeply nested expansions,9 and
injudicious use of expansions can lead to quite obfuscated code.

A simplified version of an expansion contained in Figure 4 is given in (6).
It defines a parameterized expansion namednoun , with two formal parameters
stem andgend . Calling this expansion withnoun(gaago, anim) produces the
expanded text given in (7).

(6) def noun(stem, gend) {
word stem:N {

stem: 3rd sg prox gend;
stem.n: 3rd sg obv gend;
stem.g: 3rd pl prox gend;
stem.ng: 3rd pl obv gend;

}}
noun(gaago, anim)

(7) word gaago:N {
gaago: 3rd sg prox anim;
gaagon: 3rd sg obv anim;
gaagog: 3rd pl prox anim;
gaagong: 3rd pl obv anim;

}

Occurrences of formal parameters inside of the expanded text have been replaced
with their actual values, and strings separated by a period have been concatenated.

6.2 Nested expansions for complex morphology

Expansions in conjunction with word declarations make it easy to express arbi-
trarily complicated morphology. They are used extensivelyin DotCCG grammars.
Expansions can be nested inside of each other without restriction, allowing almost
any pattern of syncretism to be factored out with little or norepetition.

As an example, a large fragment of Classical Arabic, including all noun, verb,
adjective and pronoun morphology and correct handling of resumptive pronouns in
relative clauses, was implemented in an 800-line.ccg file (about 20% of which is
comments). It produces a vocabulary with more than 1100 words. The following
portion shows how some of the complexities of present-tenseverbs can be handled:

9To help alleviate this,ccg2xml provides options to debug expansion problems, such as dis-
playing the text after expansion processing.

Arabic verb fragment. We are omitting a great deal: dual num ber,
jussive mood, all past tense forms, doubled verbs, etc.

All present-tense verbs can be reduced to four forms (five, counting the
dual), plus prefixes.

def gen-pres(mood, fsing, fsing-fem, fplur-masc, fplur-f em) {
A special phonological rule collapses adjacent glottal st ops: e.g.
_a_kulu -> _aakulu. We implement using regsub() -- see belo w.
_ . regsub(’ˆ([aiu])_’, ’\1\1’, fsing): pres, mood, 1st, sg ;
t.fsing: pres, mood, 2nd, m, sg;
t.fsing-fem: pres, mood, 2nd, f, sg;
y.fsing: pres, mood, 3rd, m, sg;
t.fsing: pres, mood, 3rd, f, sg;

n.fsing: pres, mood, 1st, pl;
t.fplur-masc: pres, mood, 2nd, m, pl;
t.fplur-fem: pres, mood, 2nd, f, pl;
y.fplur-masc: pres, mood, 3rd, m, pl;
y.fplur-fem: pres, mood, 3rd, f, pl;

}

Most verbs can be reduced to two stems (one for feminine plur al and one
for all other cases), with a specific set of endings, which v ary between
indicative and subjunctive.

def two-form-pres-indic(formv, formc) {
gen-pres(indic, formv.u, formv.iina, formv.uuna, formc. na)

}
def two-form-pres-subj(formv, formc) {

gen-pres(subj, formv.a, formv.ii, formv.uu, formc.na)
}

The basic Arabic verb conjugations are strong, second-wea k, doubled, and
third-weak. Strong verbs have one stem, while second-weak and doubled
(not included here) have two. Second-weak verbs have many s ubtypes, so
we require that each verb give both stems.

def strong-pres(form) {
two-form-pres-indic(form, form)
two-form-pres-subj(form, form)

}
def 2nd-weak-pres(formv, formc) {

two-form-pres-indic(formv, formc)
two-form-pres-subj(formv, formc)

}

Third-weak verbs merge stem and endings, and have three sub types, ending
in -aa, -ii, or -uu in the base form.

def 3rd-weak-pres-aa(form) {
gen-pres(indic, form.aa, form.ayna, form.awna, form.ayn a)
gen-pres(subj, form.aa, form.ay, form.aw, form.ayna)

}
def 3rd-weak-pres-ii(form) { ... } # Omitted to save space
def 3rd-weak-pres-uu(form) { ... } # Omitted to save space

Here we provide expansions for the various conjugations. (These are
appropriate for a full verb paradigm, including both prese nt and past
tense, but the past-tense expansion has been commented out .) Each lexical
entry specifies the past-tense stem (which is used to form t he verb’s
"dictionary form"), some properties (valency and English translation), a

present-tense stem, and any other required info. Second-w eak verbs have
two stems for each of present and past, while third-weak ver bs specify
the past (ay/aw/ii) and present (ii/uu/aa) subtypes.

def strong-verb(past, props, pres) {
word past: props {

strong-pres(pres)
}

}
def 2nd-weak-verb(pastv, props, pastc, presv, presc) {

word pastv: props {
2nd-weak-pres(presv, presc)

}
}
def 3rd-weak-verb(past_stem, props, past_type, pres_ste m, pres_type) {

word past_stem . past_type: props {
Note how we are dynamically constructing the expansion cal l!

3rd-weak-pres- . pres_type(pres_stem)
}

}

Here we declare the actual verbs. These are identical to how they appear
in the full grammar, where each one expands to 52 individual forms.

strong-verb(katab, TransV(pred=write), aktub)
2nd-weak-verb(kaan, TransV(pred=be), kun, akuun, akun)
3rd-weak-verb(_a9T, DitransV(pred=give), ay, u9T, ii)

Note that Arabic verbs are formed in a complex fashion involving prefixes,
suffixes, and internal stem changes. In general, there are different stems for past
and present, and many verbs have two stems in each tense. The endings also vary
in complicated ways among different moods and classes. By the judicious use of
nested expansions, however, we can reduce each lexical entry down to a very small
size, where only the class and underivable stem forms are given. The following
table shows the indicative and subjunctive moods generatedfor the three sample
verbs: kataba ‘write’ (strong verb),kaana ‘be’ (2nd-weak verb; note the short
vowel inyakunna), and’a9Taa ‘give’ (3rd-weak verb).

kataba.IND kataba.SBJ kaana.IND kaana.SBJ ’a9Taa.IND ’a9Taa.SBJ
1sg ’aktubu ’aktuba ’akuunu ’akuuna ’a9Taa ’a9Taa
2sg.m taktubu taktuba takuunu takuuna ta9Taa ta9Taa
2sg.f taktubiina taktubii takuuniina takuunii ta9Tayna ta9Tay
3sg.m yaktubu yaktuba yakuunu yakuuna ya9Taa ya9Taa
3sg.f taktubu taktuba takuunu takuuna ta9Taa ta9Taa
1pl naktubu naktuba nakuunu nakuuna na9Taa na9Taa
2pl.m taktubuuna taktubuu takuunuuna takuunuu ta9Tawna ta9Taw
2pl.f taktubna taktubna takunna takunna ta9Tayna ta9Tayna
3pl.m yaktubuuna yaktubuu yakuunuuna yakuunuu ya9Tawna ya9Taw
3pl.f yaktubna yaktubna yakunna yakunna ya9Tayna ya9Tayna

6.3 Expansions and built-in functions

Expansions are made even more powerful by three built-in expansion functions,
which provide the full power of regular-expression matching and replacement.
regsub(PATTERN, REPLACEMENT, TEXT) returns TEXT, but with all oc-
currences of PATTERN (a regular expression) replaced with REPLACEMENT
(a standard regular expression substitution expression, including backreferences

to captured text).ifmatch(PATTERN, TEXT, IF-TRUE, IF-FALSE) matches
regular expression PATTERN against TEXT, returning IF-TRUE if it matches and
IF-FALSE otherwise.ifmatch-nocase functions similarly, but the matching is
case-insensitive.

An example of the usage of these functions is computing English plurals:

(8) def pluralize(Word) {
ifmatch(’ˆ. * [aeiou][oy]\$’, Word, Word . s,

ifmatch(’ˆ. * ([sxoy]|sh|ch)\$’, Word,
regsub(’ˆ(. *)y\$’, ’\1i’, Word) . es,

Word . s))}

This definition handles both-s and-esendings, including words ending with-y. It
will correctly mapcat, box, boy, ladyinto cats, boxes, boys, ladies, respectively.

Expansions in combination withregsub can also be used to handle complex
cases such as infixation in Tagalog, where verbs can take on a number of different
voice affixes that single out a particular participant in an event (Kroeger, 1993). For
example, the stembili ‘buy’ can take the inflected formsbumili (actor),binili (ob-
ject),binilhan (dative),ipinambili (instrumental),ibinili (benefactive), andkabibili
(recent-perfective). The following DotCCG fragment demonstrates this, breaking
the stem into two parts to allow for infixation and usingregsub to handle redupli-
cation inkabibili and the deletion ofi and insertion ofh in binilhan:10

(9) def reduplicate (Word) { regsub(’ˆ(..)(. *)$’, ’\1\1\2’, Word) }

def regular_verb (St1, St2, LF) {
St1 . um . St2 :VerbAV (pred=LF);
St1 . in . St2 :VerbOV (pred=LF);
St1 . in . regsub(’ˆ(. *)i$’, ’\1h’, St2) . an :VerbDV (pred=LF);
ipinam . St1 . St2 :VerbIV (pred=LF);
i . St1 . in . St2 :VerbBV (pred=LF);
ka . reduplicate(St1 . St2) :VerbRP (pred=LF);

}

regular_verb (b, ili, buy);

6.4 Expansions for inheritance-like effects

In grammar engineering, inheritance is often used to eliminate redundancy by al-
lowing partial definitions to be used as a base upon which further definitions are
built. Inheritance (including defaults) is in fact one of the core aspects of the LKB
system (in that it uses the Type Description Language) whichallows complex lin-
guistic signs to be built elegantly with a series of incremental declarations using
inheritance. Villavicencio (2002) utilizes inheritance in the LKB to create a cate-
gorial grammar which defines the transitive verb and sentential complement cate-
gories as extensions of the intransitive verb category, ditransitives as extensions of
transitives, and so on.

10Tagalog verbal morphology in general is of course much more complex than for this one stem,
but this shows in principle how such patterns can be captured.

OpenCCG does not provide support for inheritance in general, but the XML
format does provide special declarations to allow the inheritance patterns used by
Villavicencio (Baldridge, 2002). Interestingly, expansions provide an alternative
way to achieve this effect:

(10) def iv_cat (PostSyn, MoreSem) {
s[E] \ np[X nom] PostSyn: E(* <Subject>X MoreSem)

}
def tv_cat (PreSyn, PostSyn, MoreSem) {

iv_cat(PreSyn / np[Y acc] PostSyn, <DirectObject>Y MoreSe m)
}
family IntransV(V) {

entry: iv_cat(,);
}
family TransV(V) {

entry: tv_cat(,,);
}
family DitransV(V) {

entry: tv_cat(, / np[Z acc] , <IndirectObject>Z);
entry: tv_cat(/ pp[Z acc] , , <IndirectObject>Z);

}

This shows the declaration of a parameterized expansion,iv cat , which defines
a category (and its semantics) while leaving variables embedded in it that allow
further syntactic and semantic arguments to be added. Thetv cat definition in
turn builds oniv cat , allowing arguments to be inserted either before or after
the direct object. TheDitransV family makes use of this, providing entries that
implement both double-object and PP-shifted forms of a ditransitive verb.

An important aspect of OpenCCG that supports this sort of inheritance in the
semantics is the use of hybrid logics (Baldridge and Kruijff, 2002) for representing
logical forms as a flattened set of elementary predications.11

Expansions provide a very flexible means to generalize not only how words are
defined (morphology), but also how categories are constructed. The space savings
(in terms of the amount of grammar code which a grammar engineer is confronted
with) can be orders of magnitude in size: for example, the 16 DotCCG lines given
above translate into 200+ (harder to maintain) lines in OpenCCG’s XML.

Of course, constructing words and categories in this way canmake it difficult
to see exactly what the lexicon looks like directly in DotCCG. VisCCG, described
in detail in the next section, is able to display—at various levels of granularity—
the resulting lexicon, both the words and the categories that are available,while the
grammar is being edited for faster development and debugging.

7 VisCCG: wiki-style GUI editing

DotCCG provides a great deal of power to the grammar engineerwith or without a
GUI. However, for many users, a GUI is still an important means for using a gram-
mar platform effectively, and visualization can help even the advanced developer

11Similar representations, e.g. Minimal Recursion Semantics, would work equally well in this
regard.

Figure 5: Debugging with CCG

see the structure and definitions of a grammar more effectively. VisCCG takes a
wiki-like approach, which enables grammar visualization while never taking the
developer too far from the underlying definitions. The goal is to allow new users
to begin using the system very quickly without constrainingadvanced users within
the bounds of purely-graphical editing (as opposed to textual editing in conjunction
with visualization).

When starting new grammars, it is often useful to iron out nuances of the lex-
icon, rules or morphology before expanding the grammar significantly. VisCCG
allows users to begin with a few essential aspects such as rules and features and
then visualize and debug them even without a complete grammar. This adheres to
the software engineering paradigm of rapid application development. Individual
sections can be edited and visualized independently, enhancing the maintainability
of the grammars.

VisCCG allows the user to begin a new grammar with a template that organizes
the modules of the grammar. This simplifies bootstrapping ofgrammar develop-
ment and also helps maintain a de facto standard for grammarsdeveloped using the
system – though users are free to deviate from it if they wish.More importantly,
as the grammar evolves over time with perhaps multiple people contributing to and
refining the grammar, the subsection to be edited is easily localized.

IDEs for programming languages provide detailed debugginginformation for
syntax errors in source code. Similarly, VisCCG identifies syntax errors in the
DotCCG source and highlights them for users to fix, as illustrated in figure 5.

Figure 6: Local editing in Lexicon mode. ThePro family has been selected for
editing from the graphical display (the top pane); this opens the grammar file for
editing at the location which specifies the family (the lowerpane).

The line numbers displayed beside the source help localize and isolate individ-
ual errors. This capability alone dramatically improves development time, even for
experienced developers.

The visualization of a grammar is often very different from what we can ex-
press in text. VisCCG enables users to view the grammar at various levels of
granularity, allowing the user to spot errors and generalizations easily and with-
out needing to view unrelated information, such as details of features or semantics.
As with wikis, VisCCG allows a user to locally edit a small part of the grammar.
This is made possible by the terseness of DotCCG, which itself is made possi-
ble by the fact that CCG categories can be concisely specifiedin a linear format.
VisCCG additionally allows editing to occur while the user continues to view the
graphical representation of the grammar. This feature allows seamless editing of
one category definition in the ‘Lexicon’ tab while other categories are visualized
at the desired granularity. Also, the results of such an editare immediately visible,
allowing the user to try out various features before saving changes. An example of
editing the ‘Pro’ family is illustrated in Figure 6.

VisCCG has many different modes of visualization. The initial screen is a basic
editor that allows the user to develop their grammar from scratch. The ‘Testbed’ tab
also the user to input new test sentences, and the ‘Feature’ tab provides a straight-
forward means of editing the feature hierarchy. The ‘Words’tab lists all available
lexical items as well as their various inflected forms. This is especially useful for
checking the output of expansions, and in particular expansions which produce
words based on stems and morphological regularities. This rich set of capabilities

enables the user to update the grammar with a tight editing and visualization cycle.
These capabilities also ease the process of grammar development by allowing the
user to focus on particular sections, while being able to switch back to any other
view easily.

8 Uses of and resources for DotCCG and VisCCG

VisCCG has been used so far in both graduate and undergraduate classes to teach
both CCG and grammar engineering. Even students with littlecomputational back-
ground were able to use the tools effectively with just a single lab session. Previ-
ous courses that used the XML format proved it to be frustrating for students, and
required many sessions for them to use at all (and certainly not master). This ex-
perience was in fact the genesis of DotCCG.

For teaching purposes and to facilitate wider use of VisCCG,we have devel-
oped a wiki12 which focuses on the various computational and linguistic resources
available for learning to use and for using the system. Theseresources include tuto-
rials, links to software download sites, and access to a number of grammars which
have been developed using VisCCG. Among these are small (in many cases tiny)
grammars for Tagalog, Ojibwe, French, and Hungarian, as well as some small-
domain English grammars. Though no truly broad-coverage grammar has been
developed with our new tools to date, they are already being used to develop gram-
mars used in some of the projects listed in Figure 2, including AdaRTE, INDIGO,
and Methodius.

We see a number of interesting directions for development ofthe tools dis-
cussed in this paper. In addition to refining the presentation of the various compo-
nents of the grammar, it would be extremely useful to be able to run the OpenCCG
parser from inside VisCCG. It would also be interesting to expand the grammar ini-
tialization process to include something like the customization questionnaire used
in the Grammar Matrix (Bender and Flickinger, 2005).

9 Conclusion

We have presented an overview and motivation of our work on a set of tools for im-
proving grammar engineering for OpenCCG. The approach is two-pronged in that
it improves textual representations of CCG grammars via theDotCCG format and
it allows the information in such grammars to be visualized with VisCCG. VisCCG
furthermore supports wiki-style editing that enables users to edit small sections of
the grammar while visualizing the rest and to see the resultsof their edits immedi-
ately. However, the use of VisCCG for editing is optional – DotCCG grammars can
be edited with any plain-text editor as well. The simplicity, flexibility and power

12http://comp.ling.utexas.edu/wiki/doku.php/openccg

of DotCCG and the optional availability of VisCCG is crucialfor supporting the
needs of both new and advanced users.

References

Baldridge, Jason. 2002.Lexically Specified Derivational Control in Combinatory
Categorial Grammar. Ph. D.thesis, University of Edinburgh.

Baldridge, Jason and Kruijff, Geert-Jan. 2003. Multi-Modal Combinatory Catego-
rial Grammar. InProceedings of EACL, Budapest, Hungary.

Baldridge, Jason and Kruijff, Geert-Jan M. 2002. Coupling CCG and Hybrid Logic
Dependency Semantics. InProceedings of ACL.

Becker, Tilman, Blaylock, Nate, Gerstenberger, Ciprian, Kruijff-Korbayov, Ivana,
Korthauer, Andreas, Pinkal, Manfred, Pitz, Michael, Poller, Peter and Schehl,
Jan. 2006. Natural and intuitive multimodal dialogue for in-car applications: The
SAMMIE system. InProceedings of the ECAI Sub-Conference on Prestigious
Applications of Intelligent Systems (PAIS 2006), Riva del Garda, Italy.

Bender, Emily M. and Flickinger, Dan. 2005. Rapid Prototyping of Scalable Gram-
mars: Towards Modularity in Extensions to a Language-Independent Core. In
Proceedings of the 2nd International Joint Conference on Natural Language
Processing IJCNLP-05 (Posters/Demos), Jeju Island, Korea.

Benzmüller, Christoph, Horacek, Helmut, Kruijff-Korbayova, Ivana, Pinkal, Man-
fred, Siekmann, Jörg and Wolska, Magdalena. 2007. NaturalLanguage Dialog
with a Tutor System for Mathematical Proofs. In Ruqian Lu, J¨org Siekmann and
Carsten Ullrich (eds.),Cognitive Systems, volume 4429 ofLNAI, Springer.

Bierner, Gann. 2001.Alternative Phrases: Theoretical Analysis and Practical Ap-
plications. Ph. D.thesis, Division of Informatics, University of Edinburgh.

Bos, Johan, Clark, Stephen, Steedman, Mark, Curran, James R. and Hockenmaier,
Julia. 2004. Wide-Coverage Semantic Representations froma CCG Parser. In
Proceedings of COLING-04, pages 1240–1246.

Bozşahin, Cem, Kruijff, Geert-Jan M. and White, Michael. 2006. Specifying
Grammars for OpenCCG: A Rough Guide. http://openccg.sf.net/.

Butt, Miriam, King, Tracy Holloway, Niño, Marı́a-Eugeniaand Segond,
Frédérique. 1998.A Grammar Writer’s Cookbook. Stanford, CA: CSLI.

Clark, Stephen and Curran, James. 2007. Wide-Coverage Efficient Statistical Pars-
ing with CCG and Log-Linear Models.Computational Linguistics33(4).

Copestake, Ann. 2002.Implementing Typed Feature Structure Grammars. Stan-
ford, CA: CSLI Publications.

Doran, Christine, Hockey, Beth Ann, Sarkar, Anoop, Srinivas, B. and Xia, Fei.
2000. Evolution of the XTAG System. In Anne Abeillé and OwenRambo (eds.),
Tree Adjoining Grammars: Formalisms, Linguistic Analysisand Processing,
pages 371–404, Stanford, CA: CSLI Publishing.

Foster, Mary Ellen and White, Michael. 2005. Assessing the impact of adaptive
generation in the COMIC multimodal dialogue system. InProceedings of the
IJCAI 2005 Workshop on Knowledge and Reasoning in PracticalDialogue Sys-
tems, Edinburgh.

Foster, Mary Ellen and White, Michael. 2007. Avoiding repetition in generated
text. InProceedings of ENLG, Schloss Dagstuhl.

Gerstenberger, Ciprian-Virgil and Wolksa, Magdalena. 2005. Introducing Topo-
logical Field Information into CCG. InProceedings of the 10th ESSLLI Student
Session, pages 62–74, Edinburgh, UK.

Hockenmaier, Julia. 2003. Parsing with Generative Models of Predicate-Argument
Structure. InProceedings of ACL.

Hockenmaier, Julia, Bierner, Gann and Baldridge, Jason. 2004. Extending the cov-
erage of a CCG System.Research in Language and Computation2, 165–208.

Hockenmaier, Julia and Steedman, Mark. 2007. CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Treebank.
Computational Linguistics33(3), 355–396.

Isard, Amy. 2007. Choosing the Best Comparison Under the Circumstances. In
Proceedings of the International Workshop on Personalization Enhanced Access
to Cultural Heritage (PATCH07), Corfu, Greece.

Isard, Amy, Brockmann, Carsten and Oberlander, Jon. 2006. Individuality and
Alignment in Generated Dialogues. InProceedings of INLG-06, pages 22–29.

Kaplan, R. M., Maxwell, J. T., King, T. H. and Crouch, R. S. 2004. Integrating
Finite-state Technology with Deep LFG Grammars. InProceedings of Combin-
ing Shallow and Deep Processing for NLP, ESSLLI 2004.

Kroeger, Paul. 1993.Phrase Structure and Grammatical Relations in Tagalog.
Stanford: CSLI Publications.

Kruijff, Geert-Jan and Baldridge, Jason. 2004. Generalizing Dimensionality in
Combinatory Categorial Grammar. InProceedings of COLING-04.

Kruijff, Geert-Jan M., Zender, Hendrik, Jensfelt, Patric and Christensen, Henrik I.
2007. Situated Dialogue and Spatial Organization: What, Where. . . and Why?
International Journal of Advanced Robotic Systems4(2).

Moore, Johanna D., Foster, Mary Ellen, Lemon, Oliver and White, Michael. 2004.
Generating tailored, comparative descriptions in spoken dialogue. InProceed-
ings of FLAIRS 2004, Miami Beach.

Nakatsu, Crystal and White, Michael. 2006. Learning to Say It Well: Reranking
Realizations by Predicted Synthesis Quality. InProceedings of COLING-ACL
2006.

Rickert, Markus, Foster, Mary Ellen, Giuliani, Manuel, By,Tomas, Panin, Giorgio
and Knoll, Alois. 2007. Integrating language, vision and action for human robot
dialog systems. InProceedings of HCI International 2007, Beijing.

Rojas-Barahona, Lina M. 2007. Adapting Combinatory Categorial Grammars in
a Framework for Health Care Dialogue Systems. InProceedings of the 11th
Workshop on the Semantics and Pragmatics of Dialogue (DECALOG 2007),
pages 187–188.

Steedman, Mark. 2000.The Syntactic Process. MIT Press/Bradford Books.

Steedman, Mark and Baldridge, Jason. To appear. Combinatory Categorial Gram-
mar. In Robert Boersley and Kersti Börjars (eds.),Nontransformational Syntax:
A Guide to Current Models, Blackwell.

Villavicencio, Aline. 2002.The Acquisition of a Unification-Based Generalised
Categorial Grammar. Ph. D.thesis, University of Cambridge.

White, Michael. 2006a. CCG Chart Realization from Disjunctive Inputs. InPro-
ceedings of INLG-06.

White, Michael. 2006b. Efficient Realization of CoordinateStructures in Combina-
tory Categorial Grammar.Research on Language and Computation4(1), 39–75.

White, Michael and Baldridge, Jason. 2003. Adapting Chart Realization to CCG.
In Proceedings of ENLG.

White, Michael, Rajkumar, Rajakrishnan and Martin, Scott.2007. Towards Broad
Coverage Surface Realization with CCG. InProceedings of the Workshop on
Using Corpora for NLG: Language Generation and Machine Translation (UC-
NLG+MT), Copenhagen.

Wolska, Magdalena and Kruijff-Korbayová, Ivana. 2004. Analysis of Mixed Natu-
ral and Symbolic Input in Mathematical Dialogs. InProceedings of ACL, pages
25–32.

Zettlemoyer, Luke and Collins, Michael. 2007. Online Learning of Relaxed CCG
Grammars for Parsing to Logical Form. InProceedings of EMNLP-CoNLL
2007.

