
Framework Independent Summarized Parser Output in XML and its
Example-based Documentation

Tam Wai Lok Miyao Yusuke Tsujii Jun’ichi
University of Tokyo University of Tokyo University of Tokyo

University of Manchester
National Centre for Text Mining

Proceedings of the GEAF 2007 Workshop

Tracy Holloway King and Emily M. Bender (Editors)

CSLI Studies in Computational Linguistics ONLINE

Ann Copestake (Series Editor)

2007

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We see a communication problem between the grammar engineering community and the NLP commu-
nity. The information to be communicated is the results produced by a grammar. This paper is about our
solution to the problem. Our solution has two components: an alternative output format and its documen-
tation. Our alternative output format carries constituency information that parsers are built for computing,
but in lesser quantity and a simpler form than the standard attribute-value matrix (AVM) output format.
The documentation for it provides a shallow and static explanation different from the deep and dynamic
explanation found in literature about grammar formalisms meant for grammar writers. The shallow and
static explanation is meant to enable members of the NLP community to achieve a shallow level of under-
standing of the results produced by a grammar for the sake of developing NLP systems that interoperate
with parsers.

1 Introduction

Grammar engineering presents an especially difficult tension between grammar writers who are predominantly
interested in carrying research in the field forward and developers who build NLP systems that interoperate
with deep parsers but are not very interested in the grammars behind them. The source of this tension is
that the results produced by grammars are not designed and documented as a language resource for the wider
NLP community. Members of the grammar engineering community can proceed with their research without
documentation that explains the meaning of the results produced by a grammar. The common knowledge
acquired from the literature about the formalism on which a grammar is based and shared among them in
the computation of the results render such documentation unnecessary for the grammar writers. However,
given that grammars are built for practical use in the development of larger NLP systems, the paucity of
documentation for users who should not need to acquire the common knowledge shared among members of
the grammar engineering community and the design of the output format of deep parsers which require such
knowledge for deciphering the results are practical problems, if not theoretical ones. In this paper, we present
a solution to these practical problems. It is our hope that our work can draw the attention of the grammar
engineering community to the need of the wider NLP community for a simpler design of and documentation
for the results produced by a grammar.

We are not being critical of the non-existence of documentation for grammar writers. There may not be a
practical problem in that area as long as members of the grammar engineering community can carry on with
their work by relying on common knowledge shared among them and on the literature about the grammar
formalisms on which their work is based. Such documentation, while good to have for the sake of new
members of the grammar engineering community, is not a solution to the practical problem in communicating
the results produced by the grammar engineering community to the wider NLP community. Developers of
NLP systems outside the grammar engineering community are not equipped with the background knowledge
needed for understanding such documentation. The solution we present here is meant for these developers
who share knowledge about linguistic concepts like POS, semantic representations and subcategorization with
grammar writers but lack the knowledge in a specific framework required for finding information about these
concepts from framework specific representations.

Our solution is built on top of ENJU (Miyao et al.[2004]). ENJU is built with a view to being a practical
parser that accepts real text and forms a part of larger NLP systems. It includes a mostly induced, partly
handcrafted grammar which keeps grammar engineering work at a minimum. This is in part why we are
less concerned with meeting the needs of grammar writers but more concerned with providing support for

use in NLP system development. This support is provided by means of an alternative output format which
carries information summarized from that carried in the standard AVM output format and documentation for
the alternative output format.

To illustrate what is kept and what is left out in our summary of a complete feature structure representation,
we give the representation of the relative pronoun ”who” in the AVM format and the representation of it in our
alternative output format one after the other.

PHON ”who”

SYNSEM

LOCAL

CAT

HEAD

AGR 1

ADJ minus

PRD binary

CASE case

MOD {}
POSTHEAD binary

VAL

SUBJ {}
COMPS{}
SPR {}
SPEC {}
CONJ {}

CONT
[

INDEX 2
]

NONLOCAL

INHER

QUE {}
SLASH {}

REL

CAT

HEAD

AGR 1

ADJ minus

PRD binary

CASE case

MOD {}
POSTHEAD binary

VAL

SUBJ {}
COMPS{}
SPR {}
SPEC {}
CONJ {}

CONT
[

INDEX 2
]

TO BIND

QUE {}
SLASH {}
REL {}

Figure 1:the complete AVM representation of ”who”

1 <t ok i d =” t 4 ” c a t =”N” pos=”WP” base =” who” l e x e n t r y =”N. 3 sg/ [& l t ;NP. 3 sg& g t ;] ” p red
=” r e l a t i v e a r g 1” a rg1 =” c8”>

who
3 < / t ok>

As an alternative to the standard AVM output format, our format is different from MRS (Copestake et al.
[2005]), another alternative output format but similar to the bracketing style used in the Penn Treebank. While

both MRS and the Penn Treebank bracketing style are grounded in linguistic theories, the Penn Treebank
bracketing style is meant to be understood (at a shallow level) without in-depth knowledge of the theories
whereas MRS is meant to be understood with deep knowledge of them. This difference is obvious in the
literature about the two formats. The Penn Treebank annotation manual (Bies[1995]) provides a large number
of examples without explaining how they are computed with the transformationalist theories. MRS comes
with a paper that describes in details the steps for computing a MRS representation and the theories on which
the computation is grounded (Copestake et al.[2005]). For the Penn Treebank, the point of enabling users
to achieve a shallow level of understanding of the analysis by annotators is to help developers to debug NLP
systems that use the Penn Treebank as a language resource by giving them an idea how the analysis of a
linguistic phenomenon looks, not to enable them to do the computation done by annotators. Likewise, we
want to enable our users to achieve a shallow level of understanding of the results produced by our grammar
for debugging NLP systems that use these results as a language resource: we do this by giving them an idea
how the analysis of a linguistic phenomenon looks. Our goal is not to enable them to do the computation done
by parsers and grammar writers.

This paper is organized as follows: We start with giving more details on the communication problem we
mention above. Then we describe our solution by highlighting some of its characteristics and providing some
examples. Finally, we conclude this paper with a summary and some thoughts on the direction our work is
heading.

2 Problem definition

In the beginning of this paper, we describe the problem we are addressing as one of communication between
the grammar engineering community and the wider NLP community. This kind of communication problems
between research communities is not uncommon in the academic world. But the problem involving the gram-
mar engineering community and the NLP community is particularly serious for two reasons.

The first reason is that substitute for more canonical documentation that serves members of the grammar
engineering community well does not function well for members of the wider NLP community. By substitute
of documentation, we are referring to textbooks that introduce students to a formalism like (Sag et al.[2003])
or handbooks that cover everything essential about a formalism like (Pollard and Sag[1994]). Literature does
not function well for members of the wider NLP communities because the parser results are different from
those in papers. The former comes with much more information than the latter. This is because linguists who
propose these formalisms omit feature-value pairs they consider irrelevant to the linguistic phenomena they
are interested in when they present the computation in papers.

Let us illustrate the difference between the result produced by a parser and the analysis given on paper with
an example. A sign of any POS carries theMOD feature in HPSG. A noun or a verb that does not function as
an adjunct is assigned an empty value for this feature. When talking about control and raising, linguists know
that there is not much point in specifying theMOD value of the control (raising) verb and its NP arguments
on paper. However, parsers do not know this. They can only display all feature-value pairs or rely on users
to choose which features to display. The knowledge required for filling in the gaps between the output of
parsers and the output given on paper, like the common knowledge that members of the grammar engineering
community rely on for carrying research in their field forward, is missing for members of the wider NLP
community. This renders the literature about the grammar formalism on which a grammar is based less useful
for members of the wider NLP community.

The second reason is that there is an explosion in the information being communicated between (the sys-
tems built by) the two communities. The grammar engineering community places little restriction on the
introduction of new features for covering new phenomena in a grammar. Often the new features are included
in the feature structure representations of all signs. So the introduction of new features for covering a new
phenomenon does not only put more information in the feature structure representations of sentences related
to the phenomenon for which the features are introduced. It also puts more information in the feature structure
representations of sentences not related to the phenomenon. The result of this is an explosion of information.
With wide-coverage being the pursuit of the grammar engineering community, we are witnessing such explo-
sions in every well-known deep parser. For example, the features structure representation of example sentence
1 has more than 500 feature-value pairs in the output produced by ENJU, the deep parser we use.

(1) John is the man who Mary loves

Common current attempts at providing a solution to the communication problem we identify here are not
satisfactory in two aspects:

• Reducing the information to be communicated to (the systems built by) the NLP community is recog-
nized as a means of providing a solution to the problem. However, the information left to be commu-
nicated to the NLP community is very often packed in a new format which demand them to acquire
new knowledge for the purpose of making sense of and using the packed information. One such new
format is MRS. It may be true that the design of a new format is inevitable for the purpose of packing the
information to be communicated. However, the reduced information is often in an unfamiliar format. If
such a format is significantly different from what developers are familiar with it would create the same
hurdle created by the original grammar frameworks.

• MRS and dependencies are two formats sometimes cited as a solution to the problem. Both formats
carry no constituency information, which is the information parsers are supposed to compute according
to the widely accepted definition of a parser as a program that identifies the phrase structure of an
input sentence. As a result, many other research communities and systems built by them expect this
information from parsers and the research community working on parsers. An example of NLP systems
that needs constituency information from parsers is a speech synthesiser. It needs the phrase structure
of an input sentence to determine the prosodic structure of it. Providing constituency information with
other information would help to solve the communication problem between the grammar engineering
community and the NLP community.

3 Solution

3.1 Our alternative output format: summarized parser output format

Our alternative output format has the following characteristics:

Fixed number of attributes In feature structure based grammar formalisms, the number of attributes of every
sign increases proportionally with the coverage of a grammar. In our simplified output format, we define
a fixed set of attributes for terminal nodes and a fixed set of attributes for non-terminal nodes.

Framework independent attribute names In feature structure based grammar formalisms, features may be
embedded as the value of some other features. Path information, that is, the names of all the embedding
features of a feature, is needed for identifying the embedded feature. Different feature structure based
formalisms have different paths and names for features that carry similar information. In our simplified
output format, attributes take atomic values and are given framework independent names based on the
type of information they carry.

Hidden value-sharing In feature structure based grammar formalisms, unification of values occurs between
features found in multiple locations, essentially repeating the same information. In our simplified output
format, inheritance of attribute values from a daughter node to its mother is not shown. Only sharing of
values between sisters and constituents in a long distance dependency relation is visible. The visibility
of value-sharing of the later kind is enough for capturing a wide range of linguistic phenomena.

It is not difficult to see that these three characteristics deal with the following sources of complaints about
the complete AVM output:

1. There are too many feature-value pairs in a feature structure representation of a constituent.

2. It is difficult to tell what kind of information is contained in an embedded feature with a long path name.

3. The sharing of values between features in a large feature structure is difficult to trace and make sense of.

4. The same piece of information appears in multiple locations.

These complaints are not only about the quantity of information represented in the complete output.
Some of these complaints are about the way information is carried. HPSG allows phrase structure trees
whose non-root nodes carry information produced by the parsing of large constituents. For example, the
SYNSEM|LOCAL|CONT|LOVER feature of the root node ”loves” in a HPSG-style phrase structure tree of
example sentence1 is assigned the
SYNSEM|LOCAL|CONT|INDEX value of the root node ”Mary”. This information is produced by the parsing
of the nonterminal embedded sentence node ”Mary loves”.

Mary

[
SYNSEM|LOCAL|CONT|INDEX 1

]

loves

[
SYNSEM|LOCAL|CONT|LOVER 1

]

[
SYNSEM|LOCAL|CONT|LOVER 1

]

Figure 2:Mary loves

In lambda calculus based semantics found in other frameworks like LFG (Dalrymple[2001]) and CCG
(Steedman[2000]), the agent role of the semantic representation of the root node ”loves” would not be filled
by the reference marker of the root node ”Mary”. Instead, it would remain uninstantiated and the variable
corresponding to the argument slot would be marked by aλ:

λX.λY.love(X, Y)

Grammar writers who are familiar with the HPSG formalism have little problem in understanding why the
agent role of the semantic representation of the root node ”loves” is filled by the reference marker of the root
node ”Mary” in a HPSG-style phrase structure tree. However, developers in the NLP community may find it
confusing. The problem is that the complete AVM output includes steps in the computation but these steps
look different from the way they look during the computation. To address this problem, we remove these steps
from our alternative output format by hiding the sharing of values.

Our alternative output format represents an attempt to simplify feature structure based grammar formalisms
without sacrificing the power of deep processing in capturing linguistic phenomena like long distance depen-
dencies and raising which proves difficult for shallow processing. Our approach is different from the approach
of output formats like MRS and dependencies. We try to summarize the complete AVM output. They extract
some specific information (e.g. semantics in the case of MRS) from the complete AVM output. For this reason,
we name our output formatSummarized Parser Output(SPO). In SPO, it is possible to distinguish between
the output produced by parsing example sentence1 and the output produced by parsing:

(2) John is a man and Mary loves John

Capturing this difference between different constructions is what we mean by capturing linguistic phenom-
ena. This is important for the output of a parser. In other alternative output formats, it would be impossible
to distinguish output produced by sentences with the same meaning or the same dependencies between con-
stituents.

SPO is meant to be a format for making it easy to use the parser results in the development of NLP systems.
During the development of an NLP system that interoperates with a parser, developers are not involved in the
computation done by the parser but they are often required to check the results produced by the parser for
debugging purpose. Textbooks and handbooks which explain how the computation is done do not meet their
need. They need a large collection of examples in the style of the Penn Treebank manual against which they
can check the results produced by the parser without doing the computation. Therefore, our documentation for
SPO is modelled on the Penn Treebank manual.

3.1.1 Specifications of SPO

Nodes of a phrase structure tree in feature structure based formalisms are structured complexes of features and
values. These nodes are represented by XML elements in SPO. The structure of a parse tree is determined
by mother-daughter relations and sister relations between its nodes. The two relations are captured in the
following way:

mother-daughter relations Two nodes in a mother-daughter relation are represented by an enclosure relation
between twoconselements. The node represented by the enclosed element is the daughter. The node
represented by the enclosing element is the mother.

sister relations Two nodes in a sister relation are represented by two non-mutually-enclosingconselements
which are both enclosed by the sameconselement.

A conselement can represent the root node, a terminal node and a nonterminal node. The outermostcons
element represents the root node. A leaf node of a parse tree is represented by atok element.

To enable our readers to visualize what we have just described, we give the following empty template with
all attributes exceptid removed .

1 <cons i d =” c1”>
<!−− t h i s i s t h e r o o t node −−>

3 <!−− t h i s i s t h e mother o f t h e c o n s t i t u e n t s r e p r e s e n t e dby c2 and c3 −−>
<cons i d =” c2”>

5 <!−− t h i s i s t h e d a u g h t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c1 −−>
<!−− t h i s i s t h e s i s t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c3 −−>

7 <t ok i d =” w1”>
<!−− t h i s i s a l e a f node −−>

9 < / t ok>
< / cons>

11 <cons i d =” c3”>
<!−− t h i s i s t h e d a u g h t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c1 −−>

13 <!−− t h i s i s t h e s i s t e r o f t h e c o n s t i t u e n t r e p r e s e n t e dby c2 −−>
<t ok i d =” w2”>

15 <!−− t h i s i s a l e a f node−−>
< / t ok>

17 < / cons>
< / cons>

As for the attributes carried by theconsandtok elements:

Attributes carried by both consand tok elements POS information (cat), reference marker (id)

Attributes carried only by conselements syntactic head (head), semantic head (semhead), the rule respon-
sible for rewriting an element as its daughter (s) (schema)

Attribute carried only by tok elements base form (base), references to lexical rules or lexical entries (lex-
entry), tense (tense), aspect (aspect), verb type (aux), the argument variables to which the semantic
representations of the corresponding nodes apply (argn), semantic representation (pred)

Attributes liketense, aspectandvoice, which correspond to features whose values are passed up from the
lexical entry of a verb to the terminal verb node and from a terminal verb node to a non-terminal verb phrase
node in a phrase structure tree of feature structures, are not included as attributes of theconselements which
we use for representing terminal nodes and non-terminal nodes. This is what we mean by hiding values shared
between a mother and a daughter.

3.1.2 Summarizing features

The attributes ofconsand tok elements are summarized from features of the corresponding nodes. Some
features of a node are captured by straightforward one-to-one conversion. Others are captured by generalizing
over a few features of the node and producing one attribute in the corresponding XML representation for
several features of the node. The rest are simply not represented in the XML form.

The case of one-to-one conversion and the case of neglecting a feature are trivial but the idea of gen-
eralizing over several features of a node requires some explanation. To illustrate, let us take thecat at-
tribute of aconselement or atok element as an example. Its value is determined by both the value of the
SYNSEM|LOCAL|CAT|HEAD feature and the value of the SYNSEM|LOCAL|CAT|SUBCAT feature of the
corresponding node. We say thecat attribute is a generalization over the HEAD feature and the SUBCAT fea-
ture. By neglecting some features and generalizing over others, we greatly reduce the number of attributes in
SPO while keeping the number of elements the same as the number of nodes in the parse tree being represented
by it.

3.1.3 An example

The specifications and the methods of summarization produce less expressive power in exchange for reducing
complexity. But they can be used creatively for capturing a wide range of linguistic phenomena in a deep but
simple way. Let us illustrate how this can be done with our analysis of the relative clause contained in example
sentence (1).

<cons i d =” c36” c a t =”NX” x c a t =” ” head=” c37” sem head=” c37” schema=”
h e a d r e l a t i v e”>

2 <cons i d =” c37” c a t =”NX” x c a t =” ” head=” t16” sem head=” t16”>
<t ok i d =” t16” c a t =”N” pos=”NN” base =” man” l e x e n t r y =” [D& l t ;N. 3 sg& g t ;] lxm ”

pred =” noun arg0”>
4 man< / t ok>< / cons>

<cons i d =” c38” c a t =” S” x c a t =” REL” head=” c40” sem head=” c40” schema=”
f i l l e r h e a d”>

6 <cons i d =” c39” c a t =” NP” x c a t =” REL” head=” t17” sem head=” t17”>
<t ok i d =” t17” c a t =”N” pos=”WP” base =” who” l e x e n t r y =”N. 3 sg/ [& l t ;NP. 3 sg& g t

;] ” p red =” r e l a t i v e a r g 1” a rg1 =” c37”>
8 who< / t ok>< / cons>

<cons i d =” c40” c a t =” S” x c a t =” TRACE” head=” c43” sem head=” c43” schema=”
s u b j h e a d”>

10 <cons i d =” c41” c a t =” NP” x c a t =” ” head=” c42” sem head=” c42” schema=”
empty spec head”>

<cons i d =” c42” c a t =”NX” x c a t =” ” head=” t18” sem head=” t18”>
12 <t ok i d =” t18” c a t =”N” pos=”NNP” base =” mary” l e x e n t r y =” [D& l t ;N. 3 sg& g t

;] lxm ” pred =” noun arg0”>
Mary< / t ok>< / cons>< / cons>

14 <cons i d =” c43” c a t =” VP” x c a t =” TRACE” head=” t19” sem head=” t19”>
<t ok i d =” t19” c a t =”V” pos=”VBZ” base =” l ove” t e n s e =” p r e s e n t” a s p e c t =”

none” vo i c e =” a c t i v e” aux=” minus” l e x e n t r y =” [NP. nom& l t ;V . bse& g t ;NP.
acc] lxm−movement ru le−s i n g u l a r 3 r d v e r b r u l e ” p red =” v e r b a r g 1 2” arg2
=” c37” arg1 =” c41”>

16 l o v e s< / t ok>< / cons>< / cons>< / cons>< / cons>

We make use of the idea of gaps in our analysis of relative clauses. In HPSG, this is done by introducing the
SYNSEM|NONLOCAL|INHER|SLASH feature, the SYNSEM|NONLOCAL|INHER|REL feature and the
SYNSEM|NONLOCAL|TO-BIND|SLASH feature. We try to do this without introducing any new attribute.
A gap is formed when the relativized argument (object) of the embedded verb (”loves”) is removed from the
subcategorization frame temporarily in the phrasal projection of the verb is formed without the argument being

sister to the verb. The phrasal projection of the verb formed as a result is gapped. A gapped verb phrase is
simply marked by being assigned acat value which says something different from the XML representation
of the phrase structure of the sentence in question about the subcategorization frame of the verb. In the XML
representation of example sentence (1), the lexical entry of the transitive verb ”love” (t19) is dominated by
a verb phrase node (c43) whose subcategorization frame contains only a subject. This is indicated by itscat
value VP. But we cannot find any other element that is enclosed by the element representing the verb phrase
node. This is what we mean by having thecat value of a verb phrase saying something different from the
phrase structure.

The semantic representation of the embedded verb ”loves” is given as the value of thepredattribute of the
lexical entry of ”loves” (t19). Its theme role is represented by thearg2 attribute of t19, which is assigned the
id value c37 of the nonterminal head noun node.id can be understood as the entity a constituent refers to. Two
different ids refer to the same entity if they come from two elements one of whoseid value is assigned as the
semheadvalue of the other. So theid value c37 of the terminal noun node andid value t16 of the root node
”man” refers to the same entity.

3.2 Shallow documentation for parser output

In this section, we first provide a more detailed description of our example-based documentation and give an
excerpt of it to illustrate the difference between theory-centred literature and example-based documentation.
Then we offer more explanation as to why the latter is better suited for developers in the NLP community.

Our documentation is indexed by linguistic phenomena. It is organized into sections, each of which in-
cludes:

1. a section title that describes a linguistic phenomenon

2. an example sentence that illustrates the linguistic phenomenon

3. the translation of the result produced by parsing the example sentence with our parser to a format based
on the Penn Treebank bracketing style

4. explanation for our analysis of the linguistic phenomenon

Here is an excerpted section broken into the mentioned elements:

Section title non-subject wh-relatives

Example sentence (3) John is the man who Mary loves

Simplified output
(S (NP (NX John))

(VP (VX is)
(NP (DP the)

(NX (NX man[id=c37]))
(S-REL (NP-REL who[pred=relative_arg1,arg1=c37])

(S-TRACE (NP (NX Mary[id=c41]))
(VP-TRACE

loves[pred=verb_arg12,arg1=c41,arg2=c37))))))

Explanation

Syntax

• The relative pronoun ”who” is assigned the POS label (cat) NP .

• The embedded transitive verb ”loves” forms a gapped verb phrase, which is assigned the POS
label VP, with no daughters.

• The gapped verb phrase is sister to the subject noun phrase ”Mary”. Together they form the
gapped sentence ”Mary loves’, which is assigned the POS label S.

• The gapped sentence is sister to the relative pronoun. Together they form the relative clause
”who Mary loves”, which is assigned the POS label S.

• The relative clause is sister to the head noun ”man”.

Semantics

• The object position (arg2) of the embedded transitive verb ”loves” is relativized. It is assigned
the reference marker (id) of the head noun ”man” (c37).

Note the similarity in style to the Penn Treebank annotation manual. Our explanation and the explanation
offered in the Penn Treebank annotation manual are shallow and static. A shallow explanation does not give
the readers the reason for a certain output. For example, we do not tell our readers the reason that a certain
attribute is assigned a certain value is because a particular feature structure unifies with another feature struc-
ture and some values of the features carried by them are shared. The Penn Treebank annotation manual does
not account for the existence of a trace in a specific position in terms of transformations. A static explanation
does not include the steps taken to compute the result. Such steps are transformations in a transformation-
alist framework and unifications in a feature structure based framework. Our explanation does not mention
unification . Likewise, transformations are hardly mentioned in the Penn Treebank annotation manual.

Also note the difference in style between our explanation and the explanation offered for the analysis of lin-
guistic phenomenon in textbooks like (Sag et al.[2003]), handbooks likePollard and Sag[1994] and literature
like Copestake et al.[2005]. The explanation offered in these textbooks, handbooks and literature meant for
members of the grammar engineering community and hence is deep and dynamic. A deep explanation gives
the readers the reason for a certain output. A dynamic explanation goes through the steps taken to compute the
result meant to be explained.

The importance of deep and dynamic explanation for grammars is obvious. (A deep and dynamic expla-
nation for the results necessarily becomes a holistic explanation for the grammar.) In order to understand how
a grammar works, grammar writers have to know which feature structure unifies with which and what values
are shared between them. It is the unification and the sharing that enable a grammar to rule out ungrammatical
sentences and construct the meaning of a sentence from its parts. The existence of such explanations, which
are so useful to grammar engineering, obviates the task of creating documentation that provides the same kind
of explanation.

However, it is easy to underestimate the importance of shallow and static explanation for results produced
by a grammar. Such documentation is a major means of communication between the producers and the con-
sumers of the parser, less often the means of communication among the producers. The need of the consumers
is determined by the purpose for which they use the parser results: in our case, this purpose is the develop-
ment of NLP systems that interoperate with parsers. What is needed is a shallow understanding of the results
produced by a grammar.

What is a shallow level of understanding of the results produced by a grammar? It is some ideas about what
the correct analysis of a linguistic phenomenon looks like. We provide examples in our shallow explanation
to allow developers to check their results. Likewise, the shallow explanation offered in the Penn Treebank
annotation manual comes with examples that allows developers to check their results they get from systems
trained with the treebank against the examples directly. There is no question about the usefulness of shallow
explanation to developers because it is simply designed to meet their needs during development.

4 Conclusion and future work

We have outlined and illustrated with examples our solution to the communication problems between the
grammar engineering community and the wider NLP community. We attempt to solve these problems by
simplifying the output of a deep parser in an alternative output format and providing documentation for that
format.

Our alternative output format SPO is different from alternative output formats proposed for other deep
parsers in our concern with preserving the syntactic information in the AVM format. We preserve this infor-
mation so that the output of our parser in its simple form can be used for a wide range of NLP applications.
(Chun et al.[2006], Miyao et al.[2006], Yakushiji et al.[2006])

The documentation for SPO provides shallow and static explanations to developers in the NLP community.
This differs from the deep and dynamic explanation found in literature that serves grammar writers well as
documentation. Though not very useful to grammar engineering, shallow and static explanation is needed by
developers in the NLP community for the purpose of building NLP systems that interoperate with parsers.
In showing that there is no substitute for documentation meant for developers, we argue that documentation
targeted at the NLP community is an urgent task for those developing parser for NLP applications.

Our idea of a simplified but information-rich output format and documentation of it for members of the
NLP community presented here are tested on a partly-handcrafted grammar should help development of ap-
plications fed on the output of more handcrafted grammars like LKB/ERGCopestake and Flickinger[2000])
as well.

We create the summarized output format described in this paper by summarizing the output of a deep parser
which do HPSG-based parsing. Our simplified output format can be used for summarizing the output of other
deep parsers which use other grammar formalisms. In fact, our simplified output format has some similarities
to LFG. For example, subcategorization information is implicitly represented by the POS label and argument
slots of the semantic representation in our simplified output and in LFG. The idea of leaving information
that can be read off the phrase structure tree (in XML format) unrepresented in attribute-value pairs is also
similar to the idea of separating constituency information from the functional-structure. Currently, we are in
talks with groups working on parsing in LFG to explore using the same output format for summarizing output
of deep parsers based on different formalisms. Our next step would be to extend the use of our summarized
output to parsers built on feature based CCG. A common output format between deep parsers based on different
formalisms would be very useful for parser evaluation, if accompanied by documentation created in the manner
described in this paper for the output produced by each of the deep parsers.

Acknowledgments

This work was partially supported by Grant-in-Aid for Specially Promoted Research (MEXT, Japan) and
Grant-in-Aid for Young Scientists (MEXT, Japan).

References

Ann Bies. Bracketing guidelines for treebank II style Penn treebank project, 1995. URL
citeseer.ist.psu.edu/bies95bracketing.html .

Hong-Woo Chun, Yoshimasa Tsuruoka, Jin-Dong Kim, Rie Shiba, Naoki Nagata, Teruyoshi Hishiki, and
Jun’ichi Tsujii. Extraction of gene-disease relations from Medline using domain dictionaries and machine
learning. InProceedings of the Pacific Symposium on Biocomputing 2006, pages 4–15, Maui, 2006.

Ann Copestake and Dan Flickinger. An open-source grammar development environment and broad-coverage
English grammar using hpsg. InProceedings of the Second conference on Language Resources and Evalu-
ation, Athens, Greece, 2000.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pollard. Minimal recursion semantics: An introduction.
In Journal of Research on Language and Computation, volume 3, pages 281–332. Springer, 2005.

Mary Dalrymple.Lexical Functional Grammar, volume 34 ofSyntax and Semantics. Academic Press, 2001.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. Corpus-oriented grammar development for acquiring
a head-driven phrase structure grammar from the penn treebank. InProceedings of the First International
Joint Conference on Natural Language Processing, pages 684–693, Hong Kong, 2004.

Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa Tsuruoka, Kazuhiro Yoshida, Takashi Ninomiya
Takashi, and Jun’ichi Tsujii. Semantic retrieval for the accurate identification of relational concepts in
massive textbases. InProceedings of COLING-ACL 2006, pages 1017–1024, Sydney, 2006.

Carl Pollard and Ivan A. Sag.Head-Driven Phrase Structure Grammar. University of Chicago Press and
CSLI Publications, 1994.

Ivan A. Sag, Tom Wasow, and Emily M. Bender.Syntactic Theory: A Formal Introduction. CSLI Publications,
second edition, 2003.

Mark Steedman.The Syntactic Process. MIT PRess, 2000.

Akane Yakushiji, Ysuke Miyao, Tomoko Ohta Tomoko, Yuka Tateisi, and Jun’ichi Tsujii. Automatic construc-
tion of predicate-argument structure patterns for biomedical information extraction. InProceedings of the
2006 Conference on Empirical Methods in Natural Language Processing, pages 284–292, Sydney, 2006.

