DESIGNING FEATURES FOR PARSE
DISAMBIGUATION AND REALISATION RANKING

Aoife Cahill Martin Forst and Christian Rohrer
Universiat Stuttgart

Proceedings of the LFGO7 Conference
Miriam Butt and Tracy Holloway King (Editors)
2007
CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We present log-linear models for use in the tasks of parse disambiguation
and realisation ranking in German. Forst (2007a) shows that by extending
the set of features used in parse disambiguation to include more linguistically
motivated information, disambiguation results can be significantly improved
for German data. The question we address in this paper is to what extent this
improved set of features can also be used in realisation ranking. We carry out
a number of experiments on German newspaper text. In parse disambigua-
tion, we achieve an error reduction of 51%, compared to an error reduction
of 34.5% with the original model that does not include the additional fea-
tures of Forst (2007a). In realisation ranking, BLEU score increases from
0.7306 to 0.7939, and we achieve a 10 point improvement in exact match
over a baseline language model. This being said, our results also show that
further features need to be taken into account for realisation ranking in order
to improve the quality of the corresponding model.

1 Introduction

Statistical disambiguation of syntactic structures has been extensively studied in re-
cent years. Riezler et al. (2002) have successfully applied a log-linear model based
on features referring to simple, mostly locally restricted c- and f-structure confi-
gurations to the task of LFG parse disambiguation for English. However, recent
studies suggest that these types of features are not sufficient for the disambiguation
of languages with relatively free word order, such as Japanese (Yoshimura et al.,
2003) or German.

Forst (2007a) shows that by extending the set of features used in parse dis-
ambiguation to include more linguistically motivated information, disambiguation
results can be significantly improved for German data. The question we address in
this paper is to what extent this improved set of features can also be used in real-
isation ranking: It is clear that some features designed for parse disambiguation
will not be useful for realisation ranking and vice versa. For example, features that
capture lexical dependencies will not be useful in generation ranking, since lexical
dependencies are given in this task. Conversely, the log-linear model for realisa-
tion ranking, where the task is to determine the most natural sounding sequence
of words, will need features that refer (only) to the surface string, and those fea-
tures are, of course, not interesting for parse disambiguation. Nevertheless, it is
reasonable to assume that c-structure features or features that refer to c-structure
and f-structure simultaneously are useful for both tasks, and that taking the angle
of both tasks may help to identify relevant features.

We present a model for realisation ranking similar to that of Velldal and Oepen
(2005). The main differences between our work and theirs is that we are working

The work described in this paper has been carried out as part of the COINS project of the
linguistic Collaborative Research Centre (SFB 732) at the University of Stuttgart, which is funded
by the German Research Foundation (DFG). Furthermore, we would like to thank John Maxwell of
the Palo Alto Research Center for being so responsive to our requests for extensions of the XLE
generator functionalities, some of which were crucial for our work.

within the LFG framework and concentrating on a less configurational language:
German.

2 System Setup

2.1 A Broad-Coverage LFG for German

For the construction of our data, we use the German broad-coverage LFG docu-
mented in Dipper (2003) and Rohrer and Forst (2006). It is a hand-crafted gram-
mar developed in and for the LFG grammar development and processing platform
XLE (Crouch et al., 2006). It achieves parsing coverage of about 80% in terms
of full parses on newspaper text, and for sentences out of coverage, the robustness
techniques described in Riezler et al. (2002) (i.e. fragment grammar, ‘skimming’)
are employed for the construction of partial analyses. The grammar is reversible,
which means that the XLE generator can produce surface realisations for well-
formed input f-structures.

2.2 Parse Disambiguation

We use a standard log-linear model for carrying out parse disambiguation
(Toutanova et al., 2002; Riezler et al., 2002; Miyao and Tsuijii, 2002; Malouf and
van Noord, 2004; van Noord, 2006; Clark and Curran, 2004). A key factor in the
success of these models is feature design. As a baseline, we design features based
on the property set used for the disambiguation of English ParGram LFG parses
(Riezler et al., 2002; Riezler and Vasserman, 2004). These properties are based
on thirteen property templates, which can be parameterised for any combination of
c-structure categories or f-structure attributes and their values. Forst (2007a) shows
that by extending this set of features used in parse disambiguation to include more
linguistically motivated information, disambiguation results can be significantly
improved for German data.

2.3 Surface Realisation

As XLE comes with a full-fledged generator, the grammar can be used both for
parsing and for surface realisatidriigure 2 shows the set of 18 strings that are
generated from the f-structure in Figure 1. In this case, the German parser only
produces one parse, and so there is no parse disambiguation necessary. However
there is some work to be done in ranking the alternative string realisations for the
input f-structure. Note that all of the surface realisations are grammatical; however,
some of them are clearly more likely or unmarked than others.

2At the moment it is not possible to generate from packed structures where ambiguity is pre-
served. However, in the future we hope to be able to do so. This would be particularly useful in an
application such as machine translation, where some ambiguities transfer across languages.

QD Die Nato werdenichtvon derEU gefuhrt.
TheNATO is not fromtheEU led.

‘NATO is not led by the EU.

"Die Nato werde nicht von der EU gefihrt."

[PRED ‘fuihren<[249:von], [21:Natop' .
[PRED 'Nato' 1
CHECK | SPEC-TYPE |:_COUNT +, DEF+, DET attr]
L INFL strong-det
SUBJ NTYPE [NSYN proper]

[PRED ‘die’
SPEC DET [DET-TYPE def]]

21|CASE nom, GEND fem, NUM sg, PERS 3
[PRED 'von<[283:EUP')

[PRED 'EU' q
CHECK | SPEC-TYPE [COUNT +, _DEF +, _DET attr]
L INFL strong-det

OBL-AG OBJ NTYPE [NSYN proper]
[-+ [PRED ‘die’
SPEC DET [DET-TYPE def]]

283 |CASE dat, GEND fem, NUM sg, PERS 3
249 |PSEM dir, PTYPE sem

ADJUNCT {2 [PRED "icht]}

15 |[ADJUNCT-TYPEneg

|_AUX-FORMwerden-pass _)

CHECK | VLEX |:_AUX-SELECT sein]

| VMORPH |:_PARTICIPLE perfect]

TNS-ASP [MOOD subjunctive PASS-SEM dynamic —. TENSEpres]

TOPIC [21:Nato]
128 |CLAUSE-TYPEdecl, PASSIVE +, STMT-TYPE decl, VTYPE main

Figure 1: F-structure for (1)

Just as hand-crafted grammars, when used for parsing, are only useful for most
applications when they have been complemented with a disambiguation module,
their usefulness as a means of surface realisation depends on a reliable module for
realisation ranking. A long list of arbitrarily ordered output strings is useless for
practical applications such as summarisation, question answering, machine trans-
lation, etc.

Die Nato werde von der EU nicht gef uhrt.
Die Nato werde nicht von der EU gef uhrt.
Nicht von der EU gef Uhrt werde die Nato.
Nicht werde von der EU die Nato gef uhrt.
Nicht werde die Nato von der EU gef uhrt.
Nicht gef Uhrt werde von der EU die Nato.
Nicht gef uhrt werde die Nato von der EU.
Von der EU nicht gef Uhrt werde die Nato.
Von der EU werde die Nato nicht gef uhrt.
Von der EU werde nicht die Nato gef uhrt.
Von der EU gef uhrt werde nicht die Nato.
Von der EU gef uhrt werde die Nato nicht.
Gefuhrt werde die Nato nicht von der EU.
Gefuhrt werde die Nato von der EU nicht.
Gefuhrt werde nicht von der EU die Nato.
Gefuhrt werde nicht die Nato von der EU.
Gefuhrt werde von der EU nicht die Nato.
Gefuhrt werde von der EU die Nato nicht.

Figure 2: The set of strings generated from the f-structure in Figure 1

Very regular preferences for certain realisation alternatives over others can be
implemented by means of so-called optimality marks (Frank et al., 2001), which
are implemented in XLE both for the parsing and the generation direction. For
ranking string realisations on the basis of ‘soft’ and potentially contradictory con-
straints, however, the stochastic approach based on a log-linear model, as it has
previously been implemented for English HPSGs (Nakanishi et al., 2005; Velldal
and Oepen, 2005), seems more adequate.

3 Feature Design

3.1 Feature Design for Parse Disambiguation

Feature design for parse disambiguation is often carried out in a semi-automatic
manner, i.e. by designing feature templates that are then instantiated automati-
cally. Although the number of features built this way is often in the hundreds of
thousands, nothing guarantees that the information relevant for disambiguation is
actually captured by some feature(s). This is particularly true when the feature
templates have been designed with little attention to typical ambiguities in the lan-
guage under consideration. Forst (2007a) shows that linguistically motivated fea-
tures that capture, e.g., the linear order of grammatical functions, the (surface and
functional uncertainty path) distance of an extraposed constituent to its f-structure
head, the nature of a DP in relation to its grammatical function (pronominal vs. full
DP, animate vs. inanimate) etc. allow for a significantly improved disambiguation

Name of feature template and parameters

Explanation

Features used for the disambiguation of English ParGram LFG parses
(Riezler et al., 2002; Riezler and Vasserman, 2004)

fs _attrs <attrs >
cs_label <cat >
fs _attr _val <attr > <val >

cs _num.children
fs _adj _attrs

<cat >
<attrl > <attr2 >
fs _sub _attrs <attrl > <attr2 >

cs_adjacent _label <catl > <cat2 >

cs_sub _label <catl > <cat2 >
cs _embedded <cat > <Depth >

cs_conj _nonpar <Depth >

lex _subcat <Lemma> <SCFs>

counts number of occurrences of attribute{gttrs> in
the f-structure

counts number of occurrences of categergat> in the
c-structure

counts number of times f-structure attributattr> has
value<val>

counts number of children of all nodes of categergat>

counts the number of times featwa@ttr2> is
immediately embedded in featuseattrl>

counts the number of times featwattr2> is embedded
somewhere ircattrl>

counts the number of catl> nodes that immediately
dominate<cat2> nodes

counts the number of cat1> nodes that (not
necessarily immediately) dominatecat2> nodes

counts the number cf cat> nodes that dominate
(at least)< Depth> other<cat> nodes

counts the number of coordinated c-structures that are
not parallel atcDeptthi> levels under the
coordinated constituent

counts the number of timesLemma> occurs with one
of the subcategorisation frames4SCFs>

Additional Linguistically Motivated Features

ADD-PROP MODXLemma>

ADD-PROP F2 <Lemma> <PoS>

ADD-PROP ACTIVE/PASSIVE <Lemma>

ADD-PROP isCommon/Def/

Pronoun/... <GP
ADD-PROP DEP11<Po0S1> <Dep>
<PoS2>

ADD-PROP PATH
ADD-PROP PRECEDE&GF1> <GF2>

DISTANCE-TO-ANTECEDENT %X

ADD-PROP DEP12<Po0S1> <Dep>
<P0S2> <lLemma2-

ADD-PROP DEP21<P0S1> <Lemmal>
<Dep> <PoS2>

ADD-PROP PRECEDESLemma> <GF1>
<GF2>

ADD-PROP MODZLemmal> <Lemma2-

ADD-PROP VADJUNCPRECEDES
<Prepl > <Prep2 >

ADD-PROP DEP22<Po0S1> <Lemmal>
<Dep> <Po0S2> <lLemma2-

counts the number of times a given lemma occurs as
a member of a MD set

counts the number of times a given lemma occurs as
a particular<PoS>

counts the number of times a (verb) lemma occurs in
active/passive voice

determines whether a DP with functietGF> is
common, definite, pronominal, etc.

counts the number of times a sub-f-structure of type
<P0S2> is embedded into a (sub-)f-structure of type
<PoS1> as its<Dep>

counts given instantiations of functional uncertainty paths

counts the number of times<aGF1> precedes
a <GF2> of the same (sub-)f-structure

distance between a relative clause and its antecedent

counts the number of times a sub-f-structure of type
<P0S2> and with<Lemma2- as its RED
is embedded into a (sub-)f-structure of type
<PoSI>as its<Dep>

counts the number of times a sub-f-structure of type
<P0S2> is embedded as it Dep> into
a (sub-)f-structure of typezPoS1> and
with <Lemmazl> as its RRED

counts the number of times<aGF1> subcategorised
for by a RRED <Lemma> precedes at GF2>
subcategorised for by the same#d

counts the number of timesLemma2- occurs in the
Mop set of a (sub-)f-structure witkLemma-
as its RRED

counts the numbers of times amAUNCT PP headed
by <PrepI> precedes an BJuNcCT PP headed by
<Prep2>, both being in an f-structure with a WPE

counts the number of times a sub-f-structure of type
<P0S2> and with<Lemma2- as its RRED is
embedded as its Dep> into a<Dep> into a<Dep>
into a (sub-)f-structure of typePoS1> and
with <Lemmal> as its RRED

Table 1. Feature templates used for semi-automatic feature construction for parse

disambiguation

of German LFG parses. Many of these features are inspired by studies on “soft”
syntactic constraints, which are most often formulated within an OT framework
(Aissen, 2003; Bresnan et al., 2001), but can also be captured as features of more
general probabilistic models (Snider and Zaenen, 2006). Table 1 gives a descrip-
tion of the main types of features used in parse disambiguation.

The evaluation of the log-linear model for parse disambiguation is described in
more detail in Forst (2007a) and Forst (2007b), so here we will be brief. The model
is trained on 8,881 partially labelled structures and tested on a test set of 1,497 sen-
tences (with 371 sentences held out to fine-tune the log-linear model parameters).
Table 2 gives a summary of the results broken down by dependency. The overall
F-score is significantly better with the disambiguation model that includes the lin-
guistically motivated additional features than the disambiguation model that relies
on the XLE template-based properties only. Overall error reduction increases from
34.5% to 51.0%.

3.2 Feature Design for Realisation Ranking

Most traditional approaches to stochastic realisation ranking involve applying lan-
guage model n-gram statistics to rank alternatives. However, n-grams alone are
often not a good enough measure for ranking candidate strings. For example, for
the f-structure associated with the strivigrheugen habe die Worte des Generalin-
spekteurs falsch interpretier{Verheugen had wrongly interpreted the words of
the inspector general’.), 144 strings can be generated. The original string is ranked
7th among all candidate strings by our language model. There are several features
in the input f-structure that we can use to improve the ranking of the desired string.
The following features could be useful: (1) Linear order of functiongggen-

erally precedes 6v), (2) Adjunct position (sentence beginning, distance from the
verb, etc.), (3) Partial VP fronting (generally marked and thus dispreferred).

2 Verheugen habe die Worte des Generalinspekteurdalsch
Verheugenhad the words the-GEN inspector-general wrongly
interpretiert.
interpreted.

‘Verheugen had mis-interpreted the words of the inspector-general.’

upper| stoch. select. stoch. select. | lower

grammatical relation/ bound | all properties | templ.-based pr| bound
morphosyntactic feature F-sc.| F-sc. err.red| F-sc. err.red| F-sc.

all 85.50 | 83.01 51.0| 82.17 34.5| 80.42

PREDs only 79.36 | 75.74 46.5| 74.69 31.0] 72.59

app (close apposition) 63 60 63 61 75 55
app _cl (appositive clause) 53 53 100 52 86 46
cc (comparative complement) 28 19 -29 19 -29 21
¢j (conjunct of coordination) 70 68 50 67 25 66
da (dative object) 67 63 67 62 58 55
det (determiner) 92 91 50 91 50 90
gl (genitive in specifier position) 89 88 75 88 75 85
gr (genitive attribute) 88 84 56 84 56 79
mo(modifier) 70 63 36 62 27 59
mod (non-head in compound) 94 89 29 89 29 87
name_mod (non-head in compl. name 82 80 33 81 67 79
number (number as determiner) 83 81 33 81 33 80
oa (accusative object) 78 75 77 69 31 65
obj (argument of prep. or conj.) 90 88 50 87 25 86
oc _fin (finite clausal object) 67 64 0 64 0 64
oc _inf (infinite clausal object) 83 82 0 82 0 82
op (prepositional object) 57 54 40 54 40 52
op_dir (directional argument) 30 23 13 23 13 22
op_loc (local argument) 59 49 29 49 29 45
pd (predicative argument) 62 60 50 59 25 58
pred _restr (lemma of nom. adj.) 92 87 62 84 38 79
qguant (quantifying determiner) 70 68 33 68 33 67
rc (relative clause) 74 62 20 59 0 59
sb (subject) 76 73 63 71 38 68
sbp (logical subj. in pass. constr.) 68 63 62 61 46 55
case 87 85 75 83 50 79
comp_form (complementizer form) 74 72 0 74 100 72
coord _form (coordinating conj.) 86 86 100 86 100 85
degree 89 88 50 87 0 87
det _type (determiner type) 95 95 - 95 - 95
fut (future) 86 86 - 86 - 86
gend (gender) 92 90 60 89 40 87
mood 90 90 - 90 - 90
num (number) 91 89 50 89 50 87
pass _asp (passive aspect) 80 80 100 79 0 79
perf (perfect) 86 85 0 86 100 85
pers (person) 85 84 83 82 50 79
pron _form (pronoun form) 73 73 - 73 - 73
pron _type (pronoun type) 71 70 0 71 100 70
tense 92 91 0 91 0 91

Table 2: F-scores (in %) in the 1,497 TiGer DB examples of our test set

"Verheugen habe die Worte des Generalinspekteurs falsch interpretiert."”

21

[PRED 'interpretierer<[1:Verheugen] [106:Wortp'
PRED ‘falsch<[279-SUBJ:prop’
PRED 'pro’
ADJUNCT SUBJ INTYPE [NSYN pronoun]
PRON-TYPEnNull
\279 ATYPE adverbial DEG-DIM pos, DEGREE positive

[PRED ‘Wort
[PRED 'Inspekteur

MOD {-12 [PRED'General]}

ADJ-GEN

NSEM[COMMOMount]
NSYN common

NTYPE [

PRED ‘die
SPEC [DET [DET-TYPE def]]

229 |CASE gen, GEND masc, NUM sg, PERS 3

INSEM[COMMOMount]
INSYN common

SPEC DET [PRED die]]

OBJ

NTYPE

DET-TYPE def
106 |CASE acc, GEND neut, NUM pl, PERS 3
[PRED ‘'Verheugen

SUBJ NTYPE

NSEM[PROPER[PROPER-TYPEnamq]]

NSYN proper
1|CASE nom, NUM sg, PERS 3

TNS-ASP [MOOD subjunctive, PERF+ _, TENSE pres]

ICLAUSE-TYPEdecl, PASSIVE -, STMT-TYPEdecl, VTYPE main

Figure 3: F-structure for (2)

1. Falsch interpretiert habe die Worte des
Generalinspekteurs Verheugen.

2. Falsch interpretiert habe die Worte des
Generalinspekteures Verheugen.

3. Die Worte des Generalinspekteurs falsch
interpretiert habe Verheugen.

5. Die Worte des Generalinspekteurs habe Verheugen
falsch interpretiert.

7. Verheugen habe die Worte des Generalinspekteurs
falsch interpretiert.

11. Falsch interpretiert habe Verheugen die Worte des
Generalinspekteurs.

15. Die Worte des Generalinspekteurs interpretiert habe
Verheugen falsch.

17. Interpretiert habe die Worte des Generalinspekteurs
Verheugen falsch.

Using the feature templates presented in Riezler et al. (2002), Riezler and
Vasserman (2004) and Forst (2007a), we construct a list of 186,731 features that
can be used for training our log-linear modeOut of these, only 1,471 actually
occur in our training data. In the feature selection process of our training regime
(see Subsection 4.2), 360 features are chosen as the most discriminating; these are
used to rank alternative solutions when the model is applied. Table 3 gives a list of
the types of features used for realisation ranking.

We divide the features into three distinct categories: language model features
(LM), c-structure features (CF) and additional features (AF). For realisation rank-
ing, we do not use f-structure features, since the f-structure is given in the input.
Examples of c-structure features are the number of times a particular category label
occurs in a given c-structure, the number of children the nodes of a particular cate-
gory have, or the number of times one particular category label dominates another.
Examples of features that take both c- and f-structure information into account are
the relative order of grammatical functions (e.guES precedes @J). As in Vell-
dal and Oepen (2005), we incorporate the language model score associated with the
string realisation for a particular structure as a feature in our model.

3For technical reasons, we were not able to include all the additional features we would have
liked to include. For example, we could not use features that capture the relative ordeswfi&r
PPs headed by given prepositions.

Name of feature template and parameters Explanation

C-structure Features

cs_label <cat > counts number of occurrences of categargat> in the
c-structure

cs right _branch counts number of right children

cs _.numchildren <cat > counts number of children of all nodes of categergat>

cs _adjacent _label <catl > <cat2 > counts the number of catl> nodes that immediately
dominate<cat2> nodes

cs_sub _label <catl > <cat2 > counts the number of catl> nodes that (not
necessarily immediately) dominatecat2> nodes

cs _embedded <cat > <Depth > counts the number of cat> nodes that dominate
(at least)< Depthi> other<cat> nodes

cs_conj _nonpar <Depth > counts the number of coordinated c-structures that are

not parallel atcDeptti> levels under the
coordinated constituent

Additional Linguistically Motivated Features
ADD-PROP PATH counts given instantiations of functional uncertainty paths
ADD-PROP PRECEDE&GF1> <GF2> counts the number of times<aGF1> precedes
a<GF2> of the same (sub-)f-structure
ADD-PROP PRECEDESLemma> <GF1> counts the number of times<aGF1> subcategorised

<GF2> for by a RRED <Lemma> precedes atGF2>
subcategorised for by the samred
DISTANCE-TO-ANTECEDENT %X distance between a relative clause and its antecedent

Language Model Features

GENNGRAMSCORE %X 3-gram language model score assigned to the
generated sentence
GENWORDLZOUNT %X number of words in the generate sentence

Table 3: Feature templates used for semi-automatic feature construction in realisa-
tion ranking

4 Realisation Ranking Experimental Setup

4.1 Data

We use the TIGER Treebank (Brants et al., 2002) to train and test our model. It
consists of just over 50,000 annotated sentences of German newspaper text. The
sentences have been annotated with morphological and syntactic information in
the form of functionally labelled graphs that may contain crossing and secondary
edges.

We split the data into training and test data using the same data split as in
Forst (2007a), i.e. sentences 8,001-10,000 of the TIGER Treebank are reserved
for evaluation. Within this section, we have 422 TIGER-annotation-compatible
f-structures, which are further divided into 86 development and 336 test structures.
We use the development set to tune the parameters of the log-linear model. Of the
86 heldout sentences and the 336 test sentences, 78 and 323 respectively are of
length>3 and hence are actually used for our final evaluation.

For training, we build a symmetric treebank of 8,609 packed c/f-structure rep-
resentations in a similar manner to Velldal et al. (2004). We do not include struc-

tures for which only one string is generated, since the log-linear model for real-
isation ranking cannot learn anything from them. The symmetric treebank was
established using the following strategy:

1. Parse the input sentence from the TIGER Treebank.

2. Select all of the analyses that are compatible with the TIGER Treebank an-
notation.

3. Of all the TIGER-compatible analyses, choose the most likely c-/f-structure
pair according to the log-linear model for parse disambiguation.

4. Generate from the f-structure part of this analysis.

5. If the input string is contained in the set of output strings, add this sen-
tence and all of its corresponding c-/f-structure pairs to the training set. The
pair(s) that correspond(s) to the original corpus sentence is/are marked as the
intended structure(s), while all others are marked as unintended.

Theoretically all strings that can be parsed should be generated by the system,
but for reasons of efficiency, punctuation is often not generated in all possible posi-
tions, therefore resulting in an input string not being contained in the set of output
strings. Whenever this is the case for a given sentence, the c-/f-structure pairs asso-
ciated with it cannot be used for training. Evaluation can be carried out regardless
of this problem, but it has to be kept in mind that the original corpus string cannot
be generated for all input f-structures. In our test set, it is generated for only 62%
of them.

Tables 4 and 5 give information about the ambiguity of the training and test
data. For example, in the training data there are 1,206 structures with more than
100 string realisations. Most of the training and test structures have between 2 and
50 possible (and grammatical) string realisations. The average sentence length of
the training data is 11.3 and it is 12.8 for the test dafe tables also show that
the structures with more potential string realisations correspond to longer sentences
than the structures that are less ambiguous when generating.

4.2 Training

We train a log-linear model that maximises the conditional probability of the ob-
served corpus sentence given the corresponding f-structure. The model is trained
in a (semi-)supervised fashion on the 8,609 (partially) labelled structures of our
training set using theometc software provided with the XLE platforntometc
performs maximum likelihood estimation on standardised feature values and offers

“This is lower than the overall average sentence length of roughly 16 in TIGER because of the
restriction that the structure produced by the reversible grammar for any TIGER sentence be compat-
ible with the original TIGER graph. As the grammar develops further, we hope that longer sentences
can be included in both training and test data.

String Realisations # of Strings| Average # of Words
> 100 1206 18.3
> 50,< 100 709 14.3
>10,< 50 3029 11.8
>1,<10 3665 7.6
Total 8609 11.3

Table 4: Number of structures and average sentence length according to ambiguity
classes in the training set

String Realisations # of Strings| Average # of Words
> 100 61 23.7
> 50,< 100 26 135
>10,< 50 120 11.6
>1,<10 129 7.8
Total 336 12.8

Table 5: Number of structures and average sentence length according to ambiguity
classes in the test set

several regularisation and/or feature selection techniques. We apply the combined
method of incremental feature selection dpdegularisation presented in Riezler
and Vasserman (2004), the corresponding parameters being adjusted on our heldout
set.

For technical reasons, the training was carried out on unpacked structures.
However, we hope to be able to train and test on packed structures in the future,
which will greatly increase efficiency.

5 Analysis of Results by Feature Type

Given the three distinct types of features in Table 3, we carry out a number of
smaller experiments on our heldout set, only training on a subset of features each
time. This is done in order to see what effect each group of features has on the
overall performance of the log-linear model, and to see what combination of feature
types performs best. We evaluate the most likely string produced by our system in
terms of two metricsexact matchandBLEU score (Papineni et al., 2002). Exact
match measures what percentage of the most probable strings are exactly identical
to the string from which the input structure was produced. BLEU score is a more
relaxed metric which measures the similarity between the selected string realisation
and the observed corpus string.

The results are given in Table 6. The results show that training on c-structure
features alone achieves the worst exact match and BLEU score. This is possibly
due to the nature of the c-structure features used, which were initially designed for
parse disambiguation. Therefore, future work is required to investigate whether

Exact Matches (%) BLEU Score
Baseline 24 0.7291
LM 23 0.7034
CF 22 0.6824
AF 23 0.7060
LM+ CF 27 0.7529
LM + AF 33 0.7705
CF + AF 33 0.7303
LM + CF + AF 35 0.7808

Table 6: Results on the heldout set of training only on subsets of feature types

c-structure features more appropriate for realisation ranking can be devised. Train-
ing on language model features alone, or additional features alone, also does not
achieve very high results. Surprisingly, the log-linear model trained on language
model features alone performs worse than the baseline language model applied
directly. We cannot be sure what causes this, but one possible reason is that the
number of words is taken into account as a feature in the log-linear model, while
the language model does not use this feature. Another reason might be that be-
cause we are working with unpacked structures, we loose a lot of precision with
the log-linear model, so that often more than one solution is ranked highest. When
this happens, we choose a solution at random, which may not always reflect the
original language model scores. This problem generally does not arise with the
language model which assigns more precise scores. However, the combination of
language model features and additional features is the one that leads to the great-
est improvement in exact match and BLEU scores. It achieves a BLEU score of
0.7705, which is only a little less than the best result achieved by combining all
three feature types. The results thus suggest that the language model features and
the additional features contribute most to the model, while the c-structure features
contribute less. Nevertheless, the c-structure features are beneficial, since the best
results are achieved by combining the three feature types.

6 Final Evaluation

We first rank the generator output with a language model trained on the Huge
German Corpus (a collection of 200 million words of newspaper and other text)
using the SRILM toolkit. The results are given in Table 7, achieving exact match
of 27% and BLEU score of 0.7306 on the test set. In comparison to the results
reported by Velldal and Oepen (2005) for a similar experiment on English, these
results are markedly lower, presumably because of the relatively free word order
of German.

We then rank the output of the generator with our log-linear model as described

Exact Match Upper Bound 62%
Exact Matches 27%
BLEU score 0.7306

Table 7: Results on the test set with the language model

above and give the results in Table 8. There is a noticeable improvement in quality.
Exact match increases from 27% to 37%, which corresponds to an error reduction
of 29%? and BLEU score increases from 0.7306 to 0.7939.

Exact Match Upper Bound 62%
Exact Matches 37%
BLEU score 0.7939

Table 8: Results on the test set with the log-linear model

There is very little comparable work on realization ranking for German. Ga-
mon et al. (2002) present work on learning the contexts for a particular subset of
linguistic operations; however, no evaluation of the overall system is given. The
work that comes closest to ours is that of Filippova and Strube (2007) who present
a two-step algorithm for determining constituent order in German. They predict
the surface order of the major non-verbal constituents in a German sentence, given
its dependency representation. They do not predict the position of the verb or
the order within constituents, nor do they generate word forms from lemmas fol-
lowed by morphological tags. Training and evaluation is carried out on Wikipedia
data and their algorithm outperforms four baseline models. They achieve an ex-
act match metric of 61%, i.e. for 61% of their corpus sentences, the order of the
major constituents generated matches the original order. At first sight, this result
looks very superior to the exact match metric of 37% we achieve, but when we take
into account that our upper bound for exact match is 62% as opposed to theirs of
100%, the results become comparable. Furthermore, it has to be taken into account
that many of the mismatches that we are penalized for result from generated word
forms that diverge from the forms in the corpus, a problem Filippova and Strube
(2007) do not deal with at all. This being said, this recent publication provides us
with many useful ideas of how to design further features relevant for the task of
realization ranking.

SRemember that the original corpus string is generated from only 62% of the f-structures of our
test set, which fixes the upper bound for exact match at 62% rather than 100%.

7 Error Analysis

We had initially expected the increase in BLEU score to be greater than 0.0633,
since German is far less configurational than English and therefore we thought the
syntactic features used in the log-linear model would play an even greater role
in realisation ranking. However, in our experiments, the improvement was only

slightly greater than the improvement achieved by Velldal and Oepen (2005). In

this section, we present some of the more common errors that our system still
produces.

Word Choice Often there is more than one surface realisation for a particular
sequence of morphological tags. Sometimes the system chooses an incorrect
form for the sentence context, and sometimes it chooses a valid, though marked
or dispreferred, form. For example, from the structure in Figure 3, the system
chooses the following string as the most probable.

Verheugerhabedie Worter des Generalinspekteuresfalsch interpretiert.
Verheugerhad thewords of theinspector-general wrongly interpreted.

There are two mismatches in this output string with respect to the original corpus
string. In the first case the system has chogé&mter as the surface realisation

for the morpheme sequen@dort+NN.Neut.NGA.Ptather than the, in this case,
correct formWorte The difference between the two realisations is semantic; they
both translate awordsin English, butWorteis a more abstract concept referring

to a meaningful stretch of text or speech, wheh#ster is more concrete and can
refer, e.g., to the words in a dictionary.

In the second (less critical) case, the system has chosen to mark the genitive
case ofGeneralinspekteuwith esrather than thes that is in the original corpus
sentence. This is a relatively frequent alternation that is difficult to predict, and
there are other similar alternations in the dative case, for example.

The second case is merely a phonological variation and does not alter the pro-
jected meaning. The first case, however, is completely incorrect and should not
be generated. To correctly generate dhgrtein this instance, the morphological
component of the system needs to be improved. The most obvious solution is to
have different lemmas for the different senses of (the pluralA@fjt In order to
improve the selection of the most natural variant of the genitive and dative mark-
ings, one solution might be to try and learn the most frequent variant for a given
lemma based on corpus statistics.

Placement of adjuncts Currently, there is no feature that captures the (relative)
location of particular types of adjuncts. In German, there is a strong tendency
for temporal adjuncts to appear early in the sentence, for example. Since the
system was not provided with data from which it could learn this generalisation, it
generated output like the following:

Frauefarzte haben die Einschénkung umstrittener Antibabypillen
Gynaecologists have the restriction controversial birth control pills
wegen erhbhter Thrombosegefaham Dienstagkritisiert.

because oincreasedisk of thrombosison Tuesday critisised.

‘Gynaecologists criticised the restriction on controversial birth control pills due to
increased risk of thrombosis on Tuesday.

where the temporal adjuncin Tuesdayvas generated very late in the sentence,
resulting in a highly marked utterance.

Discourse Information In many cases, the particular subtleties of an utterance
can only be generated using knowledge of the context in which it occurs. For
example, the following sentence appears in our development corpus:

Israelstellt denFriedensprozessachRabins Tod nichtin Frage
Israelputs the peace process after Rabin'sdeathnot in question
‘Israel does not challenge the peace process after Rabin’s death’

Our system generates the string:

NachRabins Tod stelltisraeldenFriedensprozessichtin Frage.
After Rabin’'sdeathputs Israelthe peace process not in question.

which, taken on its own, gets a BLEU score of 0. The sentence produced by our
system is a perfectly valid sentence and captures essentially the same information
as the original corpus sentence. However, without knowing anything about the
information structure within which this sentence is uttered, we have no way of
telling where the emphasis of the sentence is.

7.1 Additional Features

It is clear from the errors outlined above that further features are required in order
to achieve improved realisation ranking. For example, a feature is required that
captures the placement of adjunct types so that the tendency of temporal adjuncts
to appear before locatives is captured correctly. Including information structure
features is also necessary for the improvement of the overall system. The work de-
scribed in this paper is part of a much larger project, and future research is already
planned to integrate information structure into the surface realisation process. It is
yet to be seen whether these features could also be useful in parse disambiguation.

8 Conclusion

In this paper, we have presented the features used in log-linear models for parse
disambiguation and realisation ranking for a large-scale German LFG. We train
both parse disambiguation and realisation ranking systems on over 8,000 partially
labelled structures and test on a heldout section of almost 2,000 sentences. In the
parse disambiguation experiments, we achieve an increase in error reduction of
16.5 points with the additional features over the simple template-based features
used in the parse disambiguation of English (Forst, 2007b). In the task of real-
isation ranking, we achieve an increase in exact match score from 27% to 37%
and an increase in BLEU score from 0.7306 to 0.7939 over a baseline language
model trained on a large corpus of German. We thus show that linguistically mo-
tivated features that were initially developed for the task of parse disambiguation
carry over rather well to the task of realisation ranking. Despite these encourag-
ing results, an error analysis of the realisation ranking shows that further features
are required by the log-linear model in order to improve the quality of the output
strings. It is also unclear how suitable the BLEU score as an evaluation metric is,
and further research into other metrics and a comparison with human evaluation is
necessary.

References

Aissen, Judith. 2003. Differential Object Marking: Iconicity vs. Econohgtural
Language and Linguistic Theory

Brants, Sabine, Dipper, Stefanie, Hansen, Silvia, Lezius, Wolfgang and Smith,
George. 2002. The TIGER Treebank.RPrmoceedings of the Workshop on Tree-
banks and Linguistic TheorieSozopol, Bulgaria.

Bresnan, Joan, Dingare, S and Manning, Christopher. 2001. Soft Constraints Mir-
ror Hard Constraints. IhFG 2001

Clark, Stephen and Curran, James R. 2004. Parsing/#filausingccJand Log-
Linear Models. InProceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL '04Barcelona, Spain.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ron, King, Tracy, Maxwell, John and
Newman, Paula. 2006. XLE Documentation. Technical Report, Palo Alto Re-
search Center, CA.

Dipper, Stefanie. 2003mplementing and Documenting Large-scale Grammars —
German LFG Ph. D.thesis, IMS, University of Stuttgart.

Filippova, Katja and Strube, Michael. 2007. Generating Constituent Order in Ger-
man Clauses. IProceedings of the 45th Annual Meeting of the Association of

Computational Linguisticspages 320-327, Prague, Czech Republic: Associa-
tion for Computational Linguistics.

Forst, Martin. 2007aDisambiguation for a Linguistically Precise German Parser
Ph. D.thesis, University of Stuttgart.

Forst, Martin. 2007b. Filling Statistics with Linguistics — Property Design for the
Disambiguation of German LFG Parses.Rroceedings of the ACL Workshop
on Deep Linguistic Processingrague, Czech Republic.

Frank, Anette, King, Tracy Holloway, Kuhn, Jonas and Maxwell, John T. 2001.
Optimality Theory Style Constraint Ranking in Large-Scale LFG Grammars. In
Peter Sells (ed.formal and Empirical Issues in Optimality Theoretic Syntax
pages 367-397, Stanford, CA: CSLI Publications.

Gamon, Michael, Ringger, Eric, Corston-Oliver, Simon and Moore, Robert. 2002.
Machine-learned contexts for linguistic operations in German sentence realiza-
tion. In Proceedings of ACL 200pages 25-32, Philadelphia, PA.

Malouf, Robert and van Noord, Gertjan. 2004. Wide Coverage Parsing with
Stochastic Attribute Value Grammars. Pnoceedings of the IJCNLP-04 Work-
shop “Beyond Shallow Analyses - Formalisms and statistical modeling for deep
analyses’.

Miyao, Yusuke and Tsujii, Jun’ichi. 2002. Maximum entropy estimation for feature
forests. InProceedings of the Human Language Technology Conferedee
Diego, CA.

Nakanishi, Hiroko, Miyao, Yusuke and Tsujii, Jun’ichi. 2005. Probabilistic models
for disambiguation of an HPSG-based chart generatderdceedings of IWPT
2005

Papineni, Kishore, Roukos, Salim, Ward, Todd and Zhu, Weiding. 2002. BLEU:
a Method for Automatic Evaluation of Machine Translation Proceedings of
ACL 2002 pages 311-318, Philadelphia, PA.

Riezler, Stefan, King, Tracy Holloway, Kaplan, Ronald M., Crouch, Richard,
Maxwell, John T. and Johnson, Mark. 2002. Parsing the Wall Street Journal us-
ing a Lexical-Functional Grammar and Discriminative Estimation Techniques.
In Proceedings of ACL 2002hiladelphia, PA.

Riezler, Stefan and Vasserman, Alexander. 2004. Gradient feature testirig and
regularization for maximum entropy parsing. Broceedings of EMNLP’Q4
Barcelona, Spain.

Rohrer, Christian and Forst, Martin. 2006. Improving coverage and parsing quality
of a large-scale LFG for German. Rroceedings of LREC-200&enoa, Italy.

Snider, Neil and Zaenen, Annie. 2006. Animacy and Syntactic Structure: Fronted
NPs in English. Inintelligent Linguistic Architectures — Variations on Themes
by Ronald M. KaplanCSLI Publications.

Toutanova, Kristina, Manning, Christopher D., Shieber, Stuart M., Flickinger, Dan
and Oepen, Stephan. 2002. Parse Disambiguation for a Rich HPSG Grammar.
In First Workshop on Treebanks and Linguistic Theories (TLT2(t)es 253—

263.

van Noord, Gertjan. 2006.tA_ast Rarsing b Now Operational. In Piet Mertens,
Cedrick Fairon, Anne Dister and Patrick Watrin (edSALNO6. Verbum Ex
Machina. Actes de la 13e ca@rénce sur le traitement automatique des langues
naturelles pages 20-42, Leuven, Belgium.

Velldal, Erik and Oepen, Stephan. 2005. Maximum Entropy Models for Realization
Ranking. InProceedings of the 10th MT Sumppages 109-116, Thailand.

Velldal, Erik, Oepen, Stephan and Flickinger, Dan. 2004. Paraphrasing Treebanks
for Stochastic Realization Ranking. Proceedings of TLT Workshppages
149-160, Tibingen, Germany.

Yoshimura, H, Masuichi, Hiroshi, Ohkuma, Tomoko and Sugihara, Daigo. 2003.
Disambiguation of F-Structures based on Support Vector MacHimesmation
Processing Society of Japan SIG Nopegies 75-80.

