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Abstract

This paper presents an approach to annotation projection in a multi-parallel
corpus, that is, a collection of translated texts in more than two languages.
Existing analysis tools, like the LFG grammars from the ParGram project,
are applied to two of the languages in the corpus and the resulting annota-
tion is projected to a third language, taking advantage of the largely parallel
character of f-structure. The third language can be a low-resource language.
The technique can thus be particularly beneficial for corpus-based (cross-)
linguistic research.

We discuss a number of ways to realize automatic corpus annotation
based on multi-source projection, including direct projection and approaches
with an additional generalization step that employs machine learning tech-
niques. We present a series of detailed experiments for a sample annotation
task, verb argument identification, using the German and English ParGram
grammars for projection to Dutch and maximum entropy models for learning
generalizations.

1 Introduction

With the rising prominence of corpus-based linguistics and linguistically grounded
language technology, the demand for annotated corpora or wide-coverage tools that
will add annotation automatically is increasing. However, the development of the
necessary resources (through direct engineering, or indirectly through manual an-
notation of training data for machine learning techniques) is complicated and time-
consuming, and, especially for low-density languages, the associated costs may
be prohibitive. As a possible means of getting around this problem, researchers
have investigated techniques of annotation projection (Yarowsky and Ngai, 2001;
Yarowsky et al., 2001): annotation in a text in one language is transferred to a
parallel text in a second language. This way, the development of resources in a
language can benefit from existing resources in another language.

The research presented in this paper is situated in SFB 632, a large collabora-
tive research programme that investigates the linguistic realization of information
structure across languages. Corpus-supported research plays an important role in
this cross-linguistically oriented programme and thus there is a need for medium-
sized to large annotated corpora for many languages. Moreover, specialized lin-
guistic research into information structure will often require annotations not in-
cluded in standard treebanks: ways of providing additional annotations for more
than one language would facilitate cross-linguistic research significantly. In this
paper, we will therefore further investigate the method of automatically projecting

†The research reported in this paper has been supported by the German Research Foundation
DFG, as part of SFB (Sonderforschungsbereich) 632 “Information structure: the linguistic means
for structuring utterances, sentences and texts”, University of Potsdam/Humboldt University at
Berlin; http://www.sfb632.uni-potsdam.de/. The research was conducted in project
D4 “Methods for interactive linguistic corpus analysis” (Principal Investigator: Kuhn).
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annotation from better-studied to less-studied languages to create the required re-
sources. Collections of translated text, parallel corpora, can be obtained relatively
easily, even for low-resource languages. In particular, we investigate an extension
of the annotation projection idea: Instead of projecting from a single source lan-
guage, we can combine information from parallel texts in several languages (so
called multi-parallel texts) to induce an annotation for the target text.

It is obvious that the quality of the projected annotation depends crucially
on that of the source-side annotation; so annotation projection presupposes the
availability of reliable wide-coverage tools for source language annotation. Multi-
parallel annotation projection even requires that annotation (tools) exist for several
languages and that the parallel annotations be comparable. In the form of the LFG
grammars from the Parallel Grammar (ParGram) project (Butt et al., 2002), high-
quality broad-coverage analysis tools are available for a number of languages, pro-
viding an excellent starting point. LFG’s f-structure offers a level of analysis that
exhibits great parallelism between languages and is thus suitable for projection, be
it directly or in the form of more theory-neutral dependency structures derived from
them. Moreover, the cross-linguistic stability of the analyses produced by differ-
ent ParGram grammars is increased by the use of a carefully controlled common
framework for grammar development.1 The multi-source annotation projection
approach is thus also an interesting new context of application for the ParGram
grammars.

The rest of this paper is structured as follows. Section 2 describes multi-parallel
annotation projection and its background. Then, to make the proposal more con-
crete and to be able to empirically study various aspects of multi-source annotation
projection, Sections 3–5 describe our investigations of an example task that we
approach by means of annotation projection. Section 3 introduces this task – argu-
ment identification – and discusses different ways in which multi-parallel corpora
may be used in this task. After that, technical details of our implementation are
given in Section 4. Finally, Section 5 gives experimental results of using consen-
sus projection in various ways in the argument identification task. We offer a short
conclusion and outlook in Section 6.

2 Multi-parallel annotation projection

The idea of exploiting parallel texts and cross-lingual parallelism to transfer ex-
isting annotations in one language to a new language first was brought forward
by Yarowsky and Ngai (2001) and Yarowsky et al. (2001), who applied it to part-
of-speech tagging, morphological analysis and NP bracketing. Their method of

1In contrast, when using standard treebank-trained parsers for source-side annotation (each based
on the major available treebank for a language), one has to deal with considerably more, purely tech-
nical mismatches. For instance, the standard dependency treebank resources for German and English
differ with respect to whether the highest verb or the complementizer is the head of a subordinate
clause.



English: lawsNN

[projection]

French: lesNN loisNN

Figure 1: Incorrect POS-tag projection on the basis of 1–n alignment

annotation projection has been applied to a wide range of annotations, including
dependency parsing (Hwa et al., 2005) and role semantic analysis (Padó and Lap-
ata, 2005).

In these studies, annotation is projected from one language (the source lan-
guage) to another (the target language). There are several circumstances in which
annotation projection may be problematic. First, it may be that the source language
does not make distinctions that the target language does make. In the context of
projecting POS-tags, there may for instance be an important target-language dis-
tinction between prepositions and subordinating conjunctions, which the source
language tag set may not make (as is the case for the Penn Treebank tag set (Mar-
cus et al., 1993)). Similar situations may arise with regard to the adverb/adjective
distinction, etc. This can to a certain extent be avoided by projecting a sufficiently
general annotation. Post-processing the target annotation may also improve this
situation somewhat. Secondly, the word alignment can be problematic if several
words in one language are allowed to align to one in the other. Consider the align-
ment and projection in Figure 1, taken from Yarowsky et al. (2001). Since the
English bare plural laws, with POS-tag NN (noun) is aligned with the French two
word definite NP les lois ‘the laws’, naive annotation projection will assign the NN
tag to both words. However, this is clearly only correct for lois. Yarowsky et al.
(2001) solve this problem, too, by post-processing the target annotation.

A third source of problems for annotation projection may be the quality of the
alignment itself. Given sentence level alignment, word level alignment for large
corpora can be induced automatically (Brown et al., 1993). The quality of the
resulting alignment is good enough to be used in a wide range of applications –
most prominently in statistical machine translation. Nevertheless the alignment
will contain many errors.

Each of the three problems can be looked upon as an instance of having too
little information to correctly project annotation. In the case of a target annota-
tion that is richer than the source, this is clear. Secondly, incorrect projection of
annotation to a word that is part of a 1–n alignment (like assigning NN to les in
Figure 1) could be avoided if we had some information about which alignments in
a one-to-many configuration we should use and which not. Finally, the impact of
noisy word alignment would be reduced if we had some information that would
help us to recognize and filter out the noise from the true alignments.

The post-processing common in annotation projection work can be seen as an
attempt to add this extra information. As an example of how effective this can
be, we can take the work of Hwa et al. (2002) who project dependency structure



from English to Chinese. They report poor performance when simply projecting
dependency structure (f-score 38.1; see footnote 5 for an explanation of f-score),
but dramatically improve annotation quality (f-score 67.3) by applying transfor-
mations to the projected annotation based on independent knowledge of Chinese
syntax.

Instead of manually inputting the extra information needed to improve the qual-
ity of the projected annotation, we propose to rely on a third (or fourth, etc.) par-
allel text as a source of information. For instance, target language details that are
lacking in the annotation of one source language could well be present in the anno-
tation of a second source language or they could be derivable from the combination
of two projected annotations. Comparing multiple single source annotations may
also tell us when we should be confident about an annotation (for instance, when
the projected annotations agree) or when we are better off ignoring it. This offers
possible solutions to the problem of not knowing which path in a 1–n alignment
to use and the problem of not being able to tell noise from signal. Of course, us-
ing extra languages is not a watertight solution to the problems sketched above.
It is in principle possible that all of the source languages project exactly the same
wrong annotation, so that combining annotations does not help us at all. Still, we
expect that by using an extra language this scenario becomes less likely, thereby
increasing the overall quality of the projected annotation.

The (possibly redundant) use of two or more sources has been discussed in
various guises in quite different contexts. In Machine Translation, the old idea of
triangulation (originally due to Martin Kay) is considered a helpful tool for dis-
ambiguating translational choices (Och and Ney, 2001; Cohn and Lapata, 2007).
In the same paper that introduces annotation projection, Yarowsky et al. (2001)
demonstrate that using multiple aligned corpora improves automatic induction of
morphological analyzers in a target language. Finally, it has been pointed out
that multi-parallel data can be naturally interpreted as different views on the same
data (Callison-Burch and Osborne, 2003). It can thus be exploited in machine
learning methods that rely on having different views of the same data, such as
co-training (Blum and Mitchell, 1998) and weakly supervised versions thereof
(Hwa et al., 2003).

3 Annotation projection applied: Argument identification

To give a more concrete picture of the various aspects of multi-parallel annotation
projection, the rest of the paper will lay out a projection approach to the argument
identification task. This task consists of finding, for a given verb, the head words of
its arguments. An example annotation is given in in (1), where each word is classi-
fied as an argument or non-argument of the given head verb stellen (‘compose’).2,3

2A given word can be a non-argument in several ways: It may be a modifier of the head word un-
der consideration (like morgen, ‘tomorrow’), further embedded inside an argument (nieuwe, ‘new’),
higher up than the head word in the embedding hierarchy (als, ‘if’), or only indirectly related.

3Were needed, we abbreviate languages as follows: Dutch dut, English eng, German ger.



(1) (dut)Alsnon-arg wijarg morgennon-arg nieuwenon-arg regelsarg stellenhd . . .
if we tomorrow new rules compose
‘If we make new rules tomorrow. . . ’

Annotation like this is useful in corpus investigations of argument frames or, es-
pecially when enriched with grammatical function labels, principles of argument
ordering – an area that is directly relevant to the study of information structure, the
topic of our larger research programme. At the same time, the task is conceptually
simple enough to serve as a demonstration and to allow us to concentrate on the
methodology. Since LFG’s PRED values point to the lexical heads of f-structures
and there is a list of argument functions, the relevant information is also directly
available from an LFG parse.

3.1 Single source projection

In the most direct realization of an annotation projection approach to argument
identification, we simply transfer for each word in the source language its argument
status to aligned words in the target language. For instance, in (2), the German
annotation and the word alignment are given and used to create the annotation of
the Dutch sentence for the verb over|dragen (the verb particle is treated as a non-
argument).

(2) (ger)

(dut)

Wirarg übertragenhd Ihnenarg allenon-arg Rechtearg

we transfer you.DAT all rights

Wijarg dragenhd allenon-arg rechtenarg overnon-arg aannon-arg uarg

we transfer all rights VPART to you

Argument status annotation of the source language can be created by parsing the
source corpus and then labelling each word in a sentence whether it is the head of
an argument of a selected verb in the sentence. Word alignment can also be induced
automatically, given that we have a sufficiently large, sentence aligned corpus.

If we automatically word align the Europarl corpus, use the German and En-
glish LFG grammars to parse part of it in the respective languages, and then extract
argument status from the LFG analyses, we can project this information from Ger-
man to Dutch or from English to Dutch. We can compare this projected annotation
to a manual annotation of the same corpus (Section 4 for details), which gives
us the quality results of Table 1. Projecting from German or English to Dutch,
we find about half of all arguments that are in the corpus (recall), and about half
of the words that we project to be arguments are indeed arguments (precision).
According to the manually annotated gold standard, about every tenth word is an
argument. This means that projecting argument status from, say, German offers an
improvement in precision over just picking random words from 10.1% to 52.2%.



Precision Recall F-score

German→ Dutch 52.2 52.9 52.6
English→ Dutch 54.3 48.8 51.4

consensus 74.6 34.1 46.8

Table 1: Single source raw projection (top) and German/English consensus projec-
tion (bottom) for the argument identification task.5

3.2 Multi-source projection

As mentioned in the previous section, projection based on a single source lan-
guage is likely to suffer quite immediately from problems like annotation mis-
match, multi-word alignment, or alignment errors. By moving to multi-source pro-
jection, we hope to systematically increase the precision of the projection without
using any language- and task-specific rules and heuristics. We combine projec-
tions in the following way: Only labels that would be assigned consistently by
single source projection from two (or more) languages are actually assigned to the
target language words. We shall refer to the result as a consensus projection. The
German/English-consensus annotation for (2) is in (3):

(3) (ger)

(dut)

(eng)

Wirarg übertragenhd Ihnenarg allenon-arg Rechtearg

Wijarg dragenhd allenon-arg rechtenarg overnon-arg aan? u?

Wearg transferhd allnon-arg rightsarg toarg younon-arg

Note that we have a third category now, indicated with ’?’. This label is assigned
when the two sources disagree. In (3), English projects argument status to the
preposition aan, as English uses an oblique complement for the verb transfer just
like Dutch does for over|dragen. The German counterpart, however, uses the dative
and thus German projects argument status to the pronoun u. The result is that both
words in the PP are labelled ‘?’.

Going back to our system that involves Europarl and LFG parses for the source
languages, Table 1 shows that consensus projection indeed results in a compar-
atively high precision annotation. Recall and precision refer to those words la-
belled as arguments, which means that in these statistics the difference between

5Precision is a measure of correctness, in our case it is the number of words pairs that the system
correctly classifies as argument-head pairs divided by the number of all word pairs that the system
proposes. Recall is a measure of coverage, in our case the number of word pairs that the system
correctly proposes divided by the number of actual head-argument pairs in the text. There is typically
a trade off between precision and recall. F-score summarizes the overall system performance by
taking the harmonic mean of the two measures: f = 2× (precision× recall)/(precision+ recall).



non-arguments and ‘?’s is ignored.6 Of course, there is a precision/recall trade-off,
but high precision can be very useful in a certain type of explorative linguistic cor-
pus research, where the goal is to find some typical examples of a rare phenomenon
in a large corpus, without requiring exhaustivity or representative samples. Fur-
thermore, the high-precision results may be a good basis for machine learning of
generalizations, which we will come to next.

3.3 Beyond raw projection

So far, annotation projection has been a completely deterministic process, which
has not gone beyond the simple mechanism of projecting information over word
alignments. Let us refer to this as raw projection, a term which is agnostic about
the number of sources for the projection. We will try to improve the usefulness
and/or quality of projection by using raw projection data in two ways.

Target language classifiers Attractive an idea as it may be, raw projection –
by design – has a great disadvantage: In the end, we are tied to the parallel corpus.
Hwa et al. (2005) use projection annotation to create training data for a statisti-
cal parser that itself does not rely on the parallel corpus. To explore this option,
we have used machine learning techniques to construct an argument status classi-
fier on the basis of data that we get from raw projection. An important empirical
question is whether using consensus data has any advantages over the alternatives:
training on single source projected data, or training on a small set of manually
annotated data. Furthermore, since the motivation for annotation projection is to
avoid time-intensive and costly manual labour, we shall compare the effectiveness
of projected annotation (i.e., using high-quantity/medium-quality data) with man-
ual annotation that takes about a day to create (low-quantity/high-quality data).
Sections 5.1 and 5.2 discuss the results of these studies.

Using more information in the parallel data As it stands, we use only a
fraction of the information that is available about the source languages in our raw
projection method. The LFG parses give us much more information about the
source than just argument-head relations. For instance, we also have information
such as part-of-speech, case, finiteness, and agreement features for the words in the
parsed source language sentences. We could exploit this information in a machine
learning step that follows the raw projection step, by projecting the relevant fea-
tures to the target language words. Although this move does not free us from the
parallel corpus, one might hope that the quality of annotation improves compared
to raw consensus projection, for instance by improving recall without sacrificing
too much precision. An additional interesting question is how the resulting models
compare to target language classifiers that use richer information about the target
language, that is: can we replace target language information with source language

6The ‘?’-words would form an obvious starting point for adding some heuristics to further im-
prove the projected annotation. However, in the present paper we focus on fully general, non-
heuristic techniques.



information without losing annotation quality? Section 5.3 gives experimental re-
sults that answer these questions.

4 Details of the implementation

Having given a high level overview of the projection of argument status and the ef-
fects of moving from single source projection to multi-source consensus projection,
we now describe in detail how we obtain projected annotations and stand-alone tar-
get language classifiers from the plain parallel corpus.

For the results reported in the previous section, and in the experiments of the
next section, we use the Dutch, English, and German parts of the Europarl corpus
(Koehn, 2005). Europarl consists of translations of the proceedings of the Euro-
pean Parliament in 11 languages (∼30 million words in ∼1 million sentences per
language). Dutch will serve as the target language in the experiments presented
here. The use of Dutch as the target language instead of an actual low-density lan-
guage is motivated in these exploratory stages: We are free to play around with
the amount of resources we assume to be available in the target language (for in-
stance, we can choose to POS-tag the target corpus or not), we have easy access
to linguistic expertise in the target language that will help us evaluate the results
of the projection, and, finally, we can use existing tools (like parsers) to simulate a
target-language expert in the experiments that rely on input from such an expert.

To get from the plain parallel corpus of source and target language texts to
annotated target language texts, one takes the following steps:7 (1) The parallel
target and source texts are tokenized, split into sentences, a sentence alignment
is computed, which is then used as the basis for bootstrapping a statistical word
alignment between the target and source language words in the sentences. (2) The
source language corpora are parsed and the relevant information (most prominently
head-argument relations) is extracted from the analyses. (3) The word alignments
are used to project the head-argument relations from the source sentence(s) to the
target sentence. The exact nature of the projected annotations depends on whether
we choose to do single source or multi-source projection. For the experiments that
involve machine learning, another step is added: (4) Using the projected data as
training data, we train a binary argument status classifier. In one of the configura-
tions, the classifier can refer to additional information from the source languages

7Various of the steps described go along with a potential loss of data. For instance, if the sentence
alignment skips a sentence for one of the language pairs, the sentence cannot be used, even if it
is included in the other language pair; parse failures for either of the source languages render the
complete sentence triple unusable; free translations or errors in the automatic word alignment may
make it impossible to identify candidate head words in the target language. For our experimental
work, we did not attempt to minimize loss of data (which in some cases may not be too hard to do),
since we had a sufficient amount of raw data to start with. From a potential set of 300k German-
English-Dutch sentence triples submitted to the pipeline, we ended up with 52k usable triples. Note
that processing is completely automatic, so no human resources are wasted. When working with a
smaller corpus, the process may have to be optimized however.



that has not been used in raw projection. The details of these steps and our evalua-
tion scheme in the following subsections.

4.1 Preprocessing

We used the sentence-aligned form of the Europarl corpus (Koehn, 2005). German–
Dutch and English–Dutch word alignments were obtained with the GIZA++ tool
(Och and Ney, 2003). The IMS TreeTagger (Schmid, 1994) was used for POS-
tagging of the three languages. The POS-tags for Dutch are only used by some of
the target language classifiers in the machine learning step (details in Section 4.4).

We parsed the German and English portions of the corpus with the ParGram
LFG grammars running in the XLE environment (Crouch et al., 2007). Figure 2
shows how the information from the parses (LFG f-structures) flows from the Ger-
man and English side to form a consensus annotation of a Dutch clause. As can be
seen there, the German and English f-structures in this example are largely parallel.
The only structural difference lies in the complexity of the direct object. This is in
spite of the fact that the phrase structures are not very alike at all.

4.2 Feature extraction

Since our projection task is defined at the level of words and word alignments,
we need to transfer the grammatical information encoded in the f-structure to the
tokens of the parsed string. This information of course includes grammatical de-
pendencies, but also a host of other information that the ParGram grammars use in
parsing. This step of flattening down the nested f-structures to properties of words
in the string (that is, c-structure terminals) is labelled ‘[feature extraction]’ in Fig-
ure 2. The extraction of all relevant features is implemented as a set of rewrite
rules which are executed by XLE’s transfer system (using the extract com-
mand; see Section ‘Transfer’ in Crouch et al. (2007)). Note that the information
extracted from f-structure is always relative to a particular head word in the sen-
tence. Hence, for all other words in the sentence, the f-structure path under which
they are embedded with respect to the head word (if there is such a path) can be
uniquely specified. Henceforth, we call this specification the path feature of the
word. Figure 2 shows for each token the extracted path features with respect to the
head verbs erlassen and make in German and English, respectively.

The rich information encoded in the deep LFG grammars enables the XLE
parser to augment the preliminary tokenization provided in the input. These mod-
ifications chiefly concern compound words and multi-word expressions. How-
ever, since the word alignment is defined on the Europarl tokenization, we need
an additional mapping step after the mapping of information from f-structures to
c-structure terminals. For instance, in the German ‘[retokenization]’-step in Fig-
ure 2, we can see that the compound Rechts|vorschriften ‘regulations’ has been
deconstructed by the parser. The compound in the Europarl tokenization will re-
ceive the features extracted for the head according to XLE.
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[feature extraction]

– path=subj path=adj path=obj|adj path=obj|mod path=obj

XLE (ger): Wenn wir morgen neue Rechtsvorschriften erlassen . . .

[retokenization]

EP (ger): Wennwirarg morgen neueRechtsvorschriftenarg erlassen. . .

[projection]

EP (dut): Alswijarg morgen nieuweregelsarg stellen. . .

[projection]

EP (eng): If wearg makenewrulesarg tomorrow . . .

[retokenization]

XLE (eng): If we make new rules tomorrow . . .
– path=subj path=obj|adj path=obj path=adj

[feature extraction]
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Figure 2: Multi-source consensus projection of head-argument relations from Ger-
man and English f-structures to Dutch. Dutch wij and regels align with arguments
of erlassen in German and make in English, fulfilling the consensus criterion.



4.3 Annotation projection

The extracted path features can be directly used to generate the source language
annotation (i.e., assigning the label arg or non-arg to each word, relative to a par-
ticular target verb): A word d is an argument of the given verb h when there is
an extracted feature path(h,d,gf ), and gf is one of SUBJ, OBJ, OBJ-TH, XCOMP,
XCOMP-PRED, VCOMP, COMP, or any of the variants of OBL.

Having established the relevant information on the source language tokens in
the word-aligned parallel corpus, we can determine whether a target language word
w is an argument of a given target language verb h under single source projection:
A target language word w is an argument of h iff there are aligned source language
words w′ and h′ such that w′ is an argument of h′.

The consensus projection on the basis of two languages is defined in terms of
two single source projections. Target word w is an argument of h when the two
single source projections agree it is and w is not an argument of h when the two
single source projections agree it is not. Otherwise, w,h is annotated with a ‘?’.

4.4 Machine Learning

We used the MegaM software package8 to train maximum entropy (maxent) binary
classifiers for the argument identification task. The classifiers make use of features
relating to the head word and the candidate argument, and features relating to the
context. However, the classifiers do not take into account any information about
the argument status of other words than the candidate. We used the default settings
of MegaM and did not try to optimize parameter settings such as those concerning
penalization.

The features used by the maxent classifiers fall into four categories: lexical,
contextual, alignment geometry, and projected features. Lexical features include
the surface form, as well as the lemma and POS-tag of the candidate argument
(if available). Contextual features are sentence length, position and distance be-
tween the head and the candidate, POS-tags of adjacent words, and intervening
complementizers, verbs, and punctuation. Alignment geometry features encode in-
formation about the word alignment, such as the number of words the candidate
is aligned to (as an indication of uncertainty in the word alignment). Projected
features are used in Section 5.3, where we explore the use of source language
information in the post-raw-projection stage. Instead of providing the classifiers
with Dutch POS-tag and lemma information (as in the feature set described as ‘dut
features’), the Dutch words are here marked with feature information projected
from the aligned German and English tokens, including NP form, person, number,
tense, voice, aspect, verb type and clause type (this feature set is referred to as
‘ger+eng+surface dut features’). Finally, the feature space also includes selected
conjunctions of atomic features.

8See http://www.cs.utah.edu/˜hal/megam/

http://www.cs.utah.edu/~hal/megam/


Precision Recall F-score

3 nearest nominals 37.0 50.6 42.7
Alpino 87.1 92.5 89.7

Averaged performance

Random baseline (hypothesized) 10.1 - -
Classifier trained on 100k data points with 73.4 53.9 62.4

expert annotation, dut features (50 runs)

Table 2: Upper and lower comparison points for the argument identification task.

Some of the machine learning experiments do not use raw projection data to
train the classifiers, but rather expert annotated data. For these experiments, we
make use of the Alpino parser for Dutch (Malouf and van Noord, 2004) to simulate
human input. We use simulated expert input rather than actual human input to be
able to repeatedly train the same models on randomly selected training sets. The
amount of expert annotated training data is kept around 200 verbal heads (or 4k
data points), an amount we estimate can be manually annotated in a matter of hours.

4.5 Evaluation

We evaluate the annotation produced by raw projection or by one of the machine
learned classifiers by comparing it to a small gold standard annotated by a linguisti-
cally trained native speaker of Dutch. The annotation largely follows the guidelines
of the spoken Dutch corpus CGN (Hoekstra et al., 2003), with the important dif-
ference that not whole phrases, but only the head words of phrases are annotated
as arguments. The gold standard consists of 240 verbal heads in 222 sentences,
giving a total of 4756 data points.9

Table 2 describes the gold standard in terms of the performance of several refer-
ence approaches to the argument identification task. For instance, a simple heuris-
tic that assigns argument status to the three nominals that are closest to the selected
head achieves precision of 37.0% and recall almost as high as the single source pro-
jections of Section 3. The Alpino parser can be used for argument identification by
simply extracting the relevant verb/argument pairs from the full parsing output. It
performs very well when tested against the gold standard annotation. This justifies
its use in the simulation of expert annotation. A non-deterministic baseline that
would randomly assign argument status to words, would average a precision that
is equal to the proportion of argument-head pairs in the gold standard. In our case,
this is 10.1%.

In the evaluation of machine learned classifiers, it is important to try to rule out
the possibility that the observed results are simply due to the fact that the training

9We count a data point for each candidate pair w,h. This number is typically greater than the total
number of words in the selected subcorpus, since the same word w may be paired with different hs
in the sentence.



data is very much like or unlike the evaluation data. We therefore report average
results over 50 runs of machine learning on randomly selected sets of training data.
About these averages it is important to realize that they need not correspond to an
actual run, nor is it guaranteed that one can train a model that performs exactly
like that. Apart from the averages, it is also instructive to inspect the variation of
performance between runs: of two equally performing systems, one should prefer
one that shows little variation between test runs, as this system is more likely to
perform similarly on unseen data in the future.

As an upper limit for the machine learned classifiers based on our representa-
tions and our set of learning features, Table 2 reports a classifier that has access
to all and only Dutch features, which was trained on 100k data points that were
annotated by our simulated expert. The annotation quality on the evaluation data
is considerably lower than that of a carefully designed full parser like Alpino. This
comparison shows that despite the conceptual simplicity of the argument identifica-
tion task, it is a very hard classification task to acquire in isolation, using machine
learning techniques. Some of the difficulties are intuitively clear, as argument iden-
tification is cast as an extremely local decision. Knowing whether or not cheese in
I don’t like cheese crackers has been classified as an argument of like should influ-
ence the argument identification decision for crackers, but the classifier is ignorant
of this.10 Contrary to the purely local application of our sample classifier, any full
parser will build smaller units (phrasal constituents or dependency subgraphs), e.g.,
[cheese crackers] and incorporate valency knowledge. As our goal is to investigate
what relative improvements can be obtained with various annotation projection
techniques, the hardness of the sample task is not problematic in itself – to the con-
trary, it is interesting to study the techniques specifically for a hard task.11 At the
same time, one has to be aware that the results we obtain are likely to depend on
the choice of the sample task.

5 Experimental results

We will now turn to the experimental investigation of the three questions that were
raised in Section 3.3. To start, we investigate whether the high-precision annotation
that is the result of consensus projection is of use in training a target language clas-
sifier for the argument identification task (Section 5.1). We then compare the utility
of high-quantity/medium-quality projection data to low-quantity/high-quality data
(Section 5.2). Finally, we look into the question of whether we can replace some
target language information in the classifiers with parallel source language infor-
mation (Section 5.3).

10With contextual POS tag features, which are only included in the richest feature set ‘dut fea-
tures’, it may be possible to learn typical noun-noun compound contexts, so the resulting classifier
may have a preference for the correct reading of the cheese crackers example.

11Practical uses of the projection technique in the context of linguistic research on information
structure can be expected to involve similarly hard classification tasks; so, a realistic application has
to employ some interactive, semi-automatic regime.



5.1 Target language classifiers trained on consensus projection

We have seen in Section 3.2 that, compared to single-source projection, consensus
projection leads to high-precision annotation. However, since consensus projection
is the intersection of two single-source projections, the increase in precision comes
with a considerable loss of recall. The first question we look at is whether the
resulting high precision annotation can be used as training data for a generalizing
target language classifier, that is, a classifier that is independent of information
from the parallel corpus. To this end, we compare average performance of three
systems. In each system, the classifier uses Dutch lemma and POS-tag information
to make predictions. The systems differ in whether they are trained on 100k data
points with labels projected from German, from English, or from both languages.

The results of these experiments are shown in Table 3,12 together with the
repeated results of the various raw projection methods. The results show that the
generalization step on average ameliorates the recall problem observed for raw
consensus projection (from 34.1 to 39.9). The improved f-score (from 46.8 to 49.5)
shows that the resulting classifier strikes a better balance between precision and
recall than raw consensus projection does.

If we compare the different classifiers, we can see that the consensus data
trained classifiers (f-score 49.5) offer overall improvement over the single source
data trained classifiers (f-scores 45.6 and 44.6 respectively).13 We draw the con-
clusion that by using consensus data we are able to induce higher quality target-
language classifiers compared to single-source projection.

In addition to the increase in average performance, the boxplots clearly indicate
that the variation in recall and precision of the classifiers is less for the consensus
data trained classifiers. We interpret the increased stability of the classifiers based
on consensus data as symptomatic for the noise filtering function of the consensus
projection, speculated upon in Section 2.

In all, these first series of experiments provide evidence that for tasks like our
example task, consensus projection offers an advantage over single source annota-
tion projection for the induction of target language classifiers.

12 Each projection+generalization method was run 50 times using randomly selected Europarl
sentences and tested each time on the held-out gold standard. For instance, there are 50 preci-
sion measurements for ‘consensus, dut features’: 58.2,59.1, . . . ,64.2,64.3,64.4,64.4, . . . ,70.4,70.7
(sorted). These outcomes are summarized by the average (median) and boxplots. All boxplots are
on a scale 0–100 points. The boxplot whiskers indicate the 1.5×inter-quartile-range area around the
central 50 percent of the data. Outliers are plotted as dots. The systems without a generalization
step are deterministic, so the reported performance measures are not averages as such. For ease of
comparison, the corresponding ‘boxplots’ are drawn as medians only.

13The consensus data trained classifiers offer statistically significant improvement over the ones
trained on data projected from German in terms of average precision (median +5.1, p < .001),
average recall (+1.6, p = .023) and average f-score (+3.9, p < .001), and over those trained on
data projected from English in terms of average recall (+4.4,p < .001) and average f-score (+4.9,
p < .001) although not in terms of average precision (+0.8, p = .169).

Significance testing is done with approximate randomization testing of the median. The p-values
are based on 50k random resamplings of the pooled evaluation data of two systems. See Yeh (2000)
for references and recommendations.



Precision

Projection Generalization Average Distribution

ger→dut (none) 52.2
dut features 59.3

eng→dut (none) 54.3
dut features 63.6

consensus (none) 74.6
dut features 64.4

Recall

ger→dut (none) 52.9
dut features 38.3

eng→dut (none) 48.8
dut features 35.6

consensus (none) 34.1
dut features 39.9

F-score

ger→dut (none) 52.6
dut features 45.6

eng→dut (none) 51.4
dut features 44.6

consensus (none) 46.8
dut features 49.5

Note: Raw projection, labelled ‘(none)’, is tied to parallel corpus data, whereas the gener-
alized ‘dut features’ classifiers can be applied to arbitrary text.

Table 3: Performance of raw projection and target-language internal classifiers.
Also see footnote 12 for explanation.

5.2 Consensus projection instead of low-quantity/high-quality data

Since the purpose of annotation projection is to avoid time- and cost-intensive man-
ual efforts, a relevant question to ask is how a consensus projection based system
fares against a system that relies on a modest amount of manually annotated data,
as such a system would be a practical alternative. Table 4 compares the results
of training a classifier on 100k data points of consensus data and training it on
4k expert annotated data points. The table shows that using expert data results
in considerably higher average precision, but that it makes no difference in aver-
age recall. In terms of f-score, there is a small overall advantage in using expert
annotated data.14

Two things need to be pointed out about this comparison. First, the picture in

14100k consensus vs 4k expert: average precision +7.3, p < .001, average recall −0.9, p = .107,
and average f-score +1.5, p = .002.



Precision

Projection Generalization Average Distribution

consensus dut features 64.4
(expert) dut features 71.7

Recall

consensus dut features 39.9
(expert) dut features 39.0

F-score

consensus dut features 49.5
(expert) dut features 50.8

Table 4: Training on 100k consensus data vs. 4k expert data.

Table 4 shows smaller variation for the consensus trained models on all fronts. This
is likely to be an effect of using much more data and using data that is systemati-
cally filtered because of the consensus requirement. In a recall-oriented approach,
it is thus preferential to use a lot of consensus data over a modest amount of expert
data: The reduced stability of the latter means that a particular instance may in fact
perform much worse than average. Recall-oriented approaches are, for instance,
useful for linguistic research in the semi-automatic set-up common in lexicogra-
phy, which involves generating a candidate list of items that is then checked by a
linguistic expert.

Secondly, the consensus approach has the advantage that, depending on the
specific classification task, it may be possible to improve upon performance by
simply adding more data, at merely the cost of more computation time.

5.3 Trading target language for source language information

The classifiers we examined in the previous section relied on the availability of
some (admittedly fairly low level) analysis of the target level language, that is,
lemma and POS-tag information. For a low-density language it may be the case
that this level of analysis is not available. To compensate, one may look at informa-
tion that comes from the parallel corpus to replace the target language information.
The price one pays for this move is that the final classifier remains dependent on
being applied in the context of a multi-parallel corpus.15

Table 5 gives an overview of the performance of systems that incorporate multi-
parallel information in the generalization step: Recall that the ‘dut features’ classi-
fier has access to lemma and POS-tag information, which is missing from ‘surface
dut features’. The classifier ‘ger+eng+surface dut features’ can draw on projected

15The technique may of course still be of interest as a stepping stone in some bootstrapping cycle
that reaches independence from the parallel corpus at a later stage.



Precision

Projection Generalization Average Distribution

consensus dut features 64.4
surface dut features 77.6
ger+eng+surface dut features 62.3

Recall

consensus dut features 39.9
surface dut features 20.6
ger+eng+surface dut features 38.3

F-score

consensus dut features 49.5
surface dut features 32.2
ger+eng+surface dut features 47.3

Table 5: Impact of reduced target language information on performance.

morphosyntactic features from German and English, which may thus in part stand
in for the lacking information. Only information about the verb and argument
candidate itself is projected, so there is no stand-in for the contextual information
included in ‘dut features’.

We begin by noting that there is a considerable penalty in terms of recall and
f-score if we withhold POS-tag and lemma information from the target-language
internal classifier. Unexpectedly, however, precision increases to levels that on av-
erage lie even above consensus projection precision. The explanation for this is
that the classifier that only relies on Dutch surface forms is very conservative. It
learns for a limited number of surface forms that they are arguments. For instance,
one will see that these classifiers always predict that wij ‘we’ and ik ‘I’ are argu-
ments. This is correct: Dutch nominative pronouns are almost exclusively found
in subject position. Under this strategy, high precision goes hand in hand with low
recall. The fact that these models basically list specific cases also explains why
there is such enormous variation in the precision of these models and relatively
large variation in recall and f-score: The effectiveness of the listing approach relies
directly on how well the training data resembles the testing data.

The use of morpho-syntactic features from German and English in addition to
the Dutch surface features makes up for the loss in recall and f-score to a great
extent. The resulting system still performs worse than a system with access to
Dutch POS-tags and lemmata,16 but the differences are modest. Whether the re-
maining differences are due to the lack of contextual features in ‘ger+eng+surface
dut features’ needs to be investigated in future research.

16‘ger+eng+surface dut features’ vs. ‘dut features’: average precision −2.1, p < .001, average
recall −1.6, p < .001, average f-score −2.2, p < .001.



One may argue that if one has access to a parallel corpus anyway, one might
as well use a raw projection method. Some of these even perform better than
‘ger+eng+surface dut features’: Table 1 shows that raw projection from German
achieves f-score 52.6. However, classifiers do have the advantage that they can as-
sign a confidence level to a classification. The results in Table 5 suggest that, if one
needs classification confidence in a parallel corpus, one could replace target lan-
guage information with source language information without sustaining too much
of a hit in performance. One scenario we intend to explore in which this ability is
relevant is so-called active learning. This involves iteratively improving a classifier
by letting the machine learner select small amounts of training data to be annotated
by an expert, on the basis of its own classification confidence. Nevertheless, we are
aware that, as it is, projected feature information as a stand-in for target language
POS-tags and lemmata is of a limited use.

6 Conclusion

We have presented an extension of annotation projection, in which we exploit
multi-parallel corpora and use two (or more) languages as the source of projec-
tion. The source language annotation is automatic and based on the ParGram LFG
grammars. These grammars are a very good basis for this technique, as they are
designed to assign syntactic analyses to the two source language strings that are as
parallel as is linguistically justified.

We illustrated and tested the technique for a sample task (verb argument iden-
tification), in which one has to decide whether a word is the head of an argument
of a given verb. We have compared various ways of automatically annotating the
target language in experiments with English and German as source languages and
Dutch the target language, using Europarl data with standard statistical word align-
ments. The simplest automatic annotation method is direct, ‘raw’ projection of
annotation from a single source, which yields f-scores of 52.6 (German to Dutch)
and 51.4 (English to Dutch; see Table 1). Precision and recall are very balanced for
single-source projection. The idea of multi-source projection can be implemented
by relying only on the consensus of the two simpler projections. As expected, raw
consensus projection reduces recall but results in high precision (74.6).

The argument identification task, which we chose for its conceptual simplicity,
turned out to be a hard task to train an automatic classifier for. This is shown by
the fact that even when a relatively large amount of expert-annotated training data
is provided and a rich, reliable set of learning features is used, the classification
quality is nowhere near the quality that can be reached by reading the argument
identification decision off the output of a carefully designed full parser like the
Alpino parser (Table 2). Since we were interested in ways of obtaining relative
improvements by projection-informed techniques, a hard sample task is actually a
good starting point. One should be aware, however, that details in the results may
depend on our sample task.



Because the sample task is so hard, it is not trivial to train a stand-alone classi-
fier for the target language without providing any expert information on the target
language classification. However, the experiments reported in Section 5.1 show
that with training data obtained from consensus projection, a significant improve-
ment over training on single source projected data can be achieved (Table 3). The
recall problem of raw consensus projection can be alleviated by generalizing over
the projected data. Moreover, the resulting stand-alone classifier (average f-score
of 49.5) is applicable outside the context of a parallel corpus too.

We further compared automatic classifiers based on consensus projected train-
ing data vs. small amounts of manually labelled training data (Section 5.2) and
we tested to what degree source language information may replace target language
POS-tag information – which may not be available for a low-resource language
(Section 5.3). In both cases, the use of automatically obtained, multi-parallel pro-
jection information yielded performance only slightly inferior to the more resource
intensive alternatives. A consistent pattern was that multi-parallel projection in-
formation helped to achieve high stability in classifier performance over training
trials. This shows that the projection technique is less dependent on the contingent
similarity between training and application data.

In future work, we plan to investigate projection of different types of annota-
tion and to do an application test of semi-automatic versions of the technique in
corpus-supported linguistic research and especially in an active learning setting.
We are also planning to explore the use of more noise robust learning techniques.
The local character of the argument identification decision, discussed briefly at the
end of Section 4.5, may be typical for some annotation projection tasks. How-
ever in general, multi-parallel projection should be combined with more globally
informed models. This is one of the most prominent goals of our ongoing work.
For instance, we are now exploring full dependency parsing of the target language.
This poses some interesting research questions, like what should be counted as
consensus when the structural homomorphism across languages does not exhaust
the entire candidate sentence.
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