
Transfer Constructors

Josef van Genabith Anette Frank Michael Dorna

Dublin City University Xerox Research Centre Europe IMS, Universität Stuttgart

Computer Applications 6, chemin de Maupertuis Azenbergstr. 12

Dublin 9, Ireland F�38240 Meylan D�70174 Stuttgart

+353+(0)1 704 5074 +33+(0)4 76 61 50 37 +49+(0)711 121 1367

josef@compapp.dcu.ie Anette.Frank@xrce.xerox.com michl@ims.uni-stuttgart.de

Proceedings of the LFG98 Conference

The University of Queensland, Brisbane

Miriam Butt and Tracy Holloway King (Editors)

1998

CSLI Publications

http://www-csli.stanford.edu/publications/

Transfer Constructors

1

Abstract

We present a modular, lexicalized, reversible and ambiguity preserving approach to semantic-based

transfer on sets of linear logic meaning and transfer constructors. In many cases, transfer on sets

of meaning constructors (rather than on derived disambiguated meaning assignments) obviates the

need for spurious multiple transfer on disambiguations. We concentrate on adjuncts and embedded

head switching phenomena.

1 Introduction

A set of meaning constructors induced by a �-projection of an f-structure [1] can be seen as an un-

derspeci�ed semantic representation [12]. Di�erent scopes of quanti�ers, modi�ers, etc. are obtained

via di�erent deductions from such a set of meaning constructors. Transfer on sets of meaning con-

structors rather than on derived disambiguated meaning assignments holds the potential to avoid

the complexity of multiple (often spurious) transfer on disambiguations.

To our knowledge the idea to formalize transfer rules in linear logic was �rst presented by Fujinami

[5, 6] in a somewhat di�erent setting (Verbmobil). In his case there is no distinction between meaning

language and glue language. Here we apply linear logic based transfer in a LFG framework. Sections

2 and 3 introduce the approach, Section 4 considers problematic cases of head switching. Section 5

concludes.

2 Meaning Constructors

Consider the following f-structure associated with the German sentence Hans schwimmt :

"

SUBJ

h

PRED hans

i

2

PRED schwimmenh" SUBJi

#

1

In the linear logic based semantics of [1] the following meaning constructors are used:

hans : "

�

; hans

schwimmen : 8X [(" SUBJ)

�

; X �� "

�

; schwimmen(X)]

Instantiated to the semantic projections of the f-structure nodes above we get a set of meaning

constructors Source:

1

We are grateful for helpful comments and suggestions by Mary Dalrymple, John Lamping, John Fry, Jürgen

Wedekind, Hans Kamp, Ron Kaplan, Dick Crouch, Andy Way and our anonymous reviewers as well as the interest

of the NLTT and IMS-ParGram groups at Xerox Parc, where earlier versions of this paper were presented. Mistakes

and opinions expressed are our own. Part of this work was funded by the German Federal Ministry of Education,

Science, Research and Technology (BMBF) in the framework of the Verbmobil project under grant 01 IV 701 N3.

1

Source =

(

(f

2

)

�

; hans

8X [(f

1

SUBJ)

�

; X �� (f

1

)

�

; schwimmen(X)]

)

Since (f

1

SUBJ) = f

2

, Source ` (f

1

)

�

; schwimmen(hans).

3 Transfer Constructors

3.1 A Simple Example

Next, consider the f-structure and the meaning assignments associated with the English sentence

Hans swims:

"

SUBJ

h

PRED hans

i

2

PRED swimh" SUBJi

#

1

(

(f

2

)

�

; hans

8X [(f

2

)

�

; X �� (f

1

)

�

; swim(X)]

)

` (f

1

)

�

; swim(hans)

Let the set of instantiated meaning constructors for the English sentence be referred to as Target.

The task of transfer is to relate the two sets Source and Target. This can be achieved in terms of a

set of linear logic �transfer constructors� Trans. In the forward direction, i.e. from Source to Target,

each transfer constructor in Trans relates a source meaning constructor � to a corresponding target

meaning constructor � : � �� � . For the backward direction the �� arrow is reversed (equivalently,

its two arguments are swapped): � �� �. For our simple example Source and Target are related by:

Trans =

8

>

>

>

<

>

>

>

:

8F [F

�

; hans �� F

�

; hans]

8F [8X((F SUBJ)

�

; X �� F

�

; schwimmen(X))

��

8X((F SUBJ)

�

; X �� F

�

; swim(X))]

9

>

>

>

=

>

>

>

;

Informally, below we will sometimes refer to particular transfer constructors as in

fhans �� hans; schwimmen �� swimg. Note that in each case the transfer constructors have

wide scope quanti�cation over f-structure nodes. The f-structure nodes provide the sca�olding for

how meaning constructors can be put together in derivations.

2

Hence, we need to carry this in-

formation over in transfer (otherwise constructors would not be connected in the target meaning

constructor set).

The general idea is that a transfer constructor set Trans is used to rewrite a source meaning

constructor set Source into a target meaning constructor set Target. Strictly speaking, we do not

have separate source and target constructor sets (related by the rewriting) but continuously rewrite

Source [Trans by means of linear logic deductions.

3

Of course, the derived set Target should be

the set of meaning constructors associated with the semantic projection of the target f-structure as

obtained by independent analysis (parsing) of the target string. In the simple example discussed

above this is indeed the case:

Source [Trans ` Target ` (f

1

)

�

; swim(hans)

Target [Trans

�1

` Source ` (f

1

)

�

; swimmen(hans)

2

They specify combination possibilities in the linear logic deductions.

3

However, we will use the locution �source� and �target� set whenever convenient.

2

where Trans

�1

is just like Trans except that �� arrows relating source and target meaning

constructors are reversed.

3.2 Generation

Target provides the input to generation. Generation proceeds as follows: for each � 2 Target gener-

ation retrieves a matching lexical entry lex in the target grammar. Matching spreads instantiated

f-structure nodes in � to co-indexed f-structure nodes in the f-description parts ' in lexical entires

lex . The conjunction

V

' = � over such ' yields an f-description �. Alternative matches may pro-

duce alternative �. � is then passed on to standard f-structure generation [9, 13] which produces

the target string.

3.3 Ambiguity Preserving Transfer

Transfer on sets of source language meaning constructors rather than disambiguated meaning as-

signments obviates the need for multiple transfer on disambiguations if the ambiguity in question

is preserved in both source and target. Examples are quanti�er and operator scope, and adjuncts.

Consider the following interactions between quanti�er and adjunct scope in English and German:

Usually Hans suggests a restaurant and Normalerweise schlägt Hans ein Restaurant vor. The cor-

responding f-structures are

2

6

6

6

6

6

6

6

4

SUBJ

h

PRED hans

i

2

PRED suggesth" SUBJ; " OBJi

OBJ

"

PRED restaurant

SPEC a

#

3

ADJN f

h

PRED usually

i

4
g

3

7

7

7

7

7

7

7

5

1

2

6

6

6

6

6

6

6

4

SUBJ

h

PRED hans

i

2

PRED vorschlagenh" SUBJ; " OBJi

OBJ

"

PRED restaurant

SPEC a

#

3

ADJN f

h

PRED normalerweise

i

4
g

3

7

7

7

7

7

7

7

5

1

The meaning constructor for adjuncts (cf. [2]) involves inside-out functional uncertainty (ADJN 3")

to access semantic material induced by the adjunct embedding f-structure:

usually : 8P [(ADJN 2")

�

; P �� (ADJN 2")

�

; usually(P)]

From the meaning constructors associated with the English example sentence

Source =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1

e

: (f

2

)

�

; hans

2

e

: 8X;Y [((f

2

)

�

; X
 (f

3

)

�

; Y) �� (f

1

)

�

; suggest(X;Y)]

3

e

: 8X[(f

3

)

�

VAR; X �� (f

3

)

�

RESTR; restaurant(X)]

4

e

: 8R;S; Scope[(8X((f

3

)

�

VAR; X �� (f

3

)

�

RESTR; R(X))

8X((f

3

)

�

; X �� Scope; S(X)))

�� ; exists(R;S)]

5

e

: 8P [(f

1

)

�

; P �� (f

1

)

�

; usually(P)]

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

we deduce the two readings

f1

e

; 2

e

; 3

e

; 4

e

; 5

e

g ` usually(exists(restaurant; �x:suggest(hans; x)))

f1

e

; 2

e

; 3

e

; 4

e

; 5

e

g ` exists(restaurant; �x:usually(suggest(hans; x)))

3

as required. The German target meaning constructors and deductions are completely analogous:

Target =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1

g

: (f

2

)

�

; hans

2

g

: 8X;Y [((f

2

)

�

; X
 (f

3

)

�

; Y) �� (f

1

)

�

; vorschlagen(X;Y)]

3

g

: 8X[(f

3

)

�

VAR; X �� (f

3

)

�

RESTR; restaurant(X)]

4

g

: 8R;S; Scope[(8X((f

3

)

�

VAR; X �� (f

3

)

�

RESTR; R(X))

8X((f

3

)

�

; X �� Scope; S(X)))

�� Scope; exists(R;S)]

5

g

: 8P [(f

1

)

�

; P �� (f

1

)

�

; normalerweise(P)]

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

It can be seen that the set Trans of transfer constructors

Trans =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

t

: 8F [F

�

; hans �� F

�

; hans]

2

t

: 8F [8X;Y (((F SUBJ)

�

; X
 (F OBJ)

�

; Y) �� F

�

; suggest(X;Y))

��

8X;Y (((F SUBJ)

�

; X
 (F OBJ)

�

; Y) �� F

�

; vorschlagen(X;Y))]

3

t

: 8F [8X(F

�

VAR; X �� F

�

RESTR; restaurant(X))

��

8X(F

�

VAR; X �� F

�

RESTR; restaurant(X))]

4

t

:

8F (8R;S; Scope[(8X(F

�

VAR; X �� F

�

RESTR; R(X))

 8X(F

�

; X �� Scope; S(X)))

�� Scope; exists(R;S)]

��

8R;S; Scope[(8X(F

�

VAR; X �� F

�

RESTR; R(X))

 8X(F

�

; X �� Scope; S(X)))

�� Scope; exists(R;S)])

5

t

: 8F [8P (F

�

; P �� F

�

; usually(P))

��

8P (F

�

; P �� F

�

; normalerweise(P))]

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

relates Source and Target : Source [Trans ` Target . Transfer on the set of source meaning con-

structors carries over the ambiguity intact and avoids multiple transfer on disambiguations.

Sections 3.1 and 3.3 have illustrated the basic idea. The reader may have noticed that as stated

above, �rst, transfer constructors are massively redundant and second, there is nothing to guarantee

that our deductions terminate in a set of target meaning constructors rather then in disambiguated

target meaning assignments. These issues are addressed below.

3.4 Transfer Architecture

The resource sensitivity of linear logic provides a natural setting to de�ne transfer. In addition to

providing a homogeneous framework for both the construction of and transfer on semantic represen-

tations in current LFG architectures we can exploit the resource sensitivity of linear logic to ensure

that transfer exhaustively covers all source meaning contributions.

4

In order to be able to de�ne transfer on underspeci�ed representations we need to relate corre-

sponding sets of source and target meaning constructors. If transfer is de�ned in terms of linear

logic transfer constructors (and linear logic deductions) we need to ensure that transfer operating

on a set of source meaning constructors and a set of transfer constructors terminates in a set of

target meaning constructors. In other words, we need to prevent transfer deductions from delivering

disambiguated target meaning assignments. As stated in the introductory sections above, there is

nothing to prevent transfer deductions to terminate in completely disambiguated target meaning

assignments. While this would not deliver incorrect results it would defeat the very idea of ambi-

guity preserving transfer on underspeci�ed representations. Termination in sets of target meaning

constructors can be ensured in a number of ways. Here we de�ne a special transfer connective ��

t

and restrict application of ��

t

to linear implication elimination (linear modus ponens � here in a

natural deduction style format [11]) as its only inference rule:

� `

t

� � `

t

� ��

t

�

�� `

t

�

This together with the stipulations that (i) transfer deductions `

t

may only be applications of

��

t

elimination (together with the required universal eliminations/introductions and � and �

equivalences), (ii) transfer constructors have exactly one occurrence of ��

t

as its main connective

and (iii) meaning constructors are not allowed to contain the ��

t

connective, ensures that transfer

terminates in sets of target meaning constructors. In this scenario, transfer is a very simple and

restricted operation.

There is a further issue to be dealt with here: so far we have simply assumed that in each of

the transfer deductions we have at our disposal exactly the set of transfer constructors relevant to

whatever is the current task at hand. This assumption was needed to insure that transfer deductions

consume both the source meaning constructor set and the relevant transfer constructor set. Transfer

is complete once the two �input� sets are consumed. This begs the question: how do we manage to

obtain the set of transfer constructors relevant to the task at hand in the �rst place? For a realistic

transfer scenario we will have to assume one large set Trans of transfer constructors associated

with a given pair of source and target grammars. Furthermore, since, in all likelihood, transfer

constructors may be used more than once, we'll have to assume that all transfer constructores are

pre�xed by the �of course� operator, !, also known as bang.

4

There are two possibilities to ensure

termination in sets of target meaning constructors in this more global scenario. Given a local set of

source meaning constructors Source, obtained from analysing a source sentence, and the global set

of banged transfer constructors Trans, associated with a pair of source and target grammars, we

retrieve, at each stage of the transfer deductions, one source meaning constructor �, perform Trans

[f�g `

t

� and collect the result, a target meaning constructor � in a new set Target. Transfer into

sets of target meaning constructors is completed once Source is empty.

INPUT Source, Trans

OUTPUT Target

Target := ;

REPEAT UNTIL Source = ;

BEGIN

Source := Source - �

Trans [f�g `

t

�

Target := Target [f�g

END

4

! switches o� resource accounting.

5

An alternative is to simply tag transfer constructors to terminal strings (i.e. the words � and thereby

the lexical entries � in the lexcion). In this way, relevant sets of transfer constructors tailored to the

task at hand can be constructed automatically during analysis of the source input string. Given the

constraints on ��

t

and `

t

the derivation will terminate in a set Target consisting only of target

meaning constructors.

3.5 A Shortcut

The transfer constructors we have presented so far are massively redundant. We identify two types

of redundancy:

First, transfer constructors of the form � ��

t

� which relate identical source and target meaning

constructors can be dropped. In fact, ` � �� � is a simple tautology in linear logic.

The second type of redundancy occurs when the source and the target meaning constructors related

by the transfer constructor have left-common pre�xes �:

(� �� �) ��

t

(� �� �)

This transfer constructor matches a source meaning constructor (� �� �) to produce a target

meaning constructor (� �� �) under linear modus ponens. We can achieve exactly the same e�ect

by reducing the transfer constructor to the more perspicuous

� ��

t

�

and combining this with the source meaning constructors (� �� �) under transitivity of linear

implication (recall that ��

t

is �� restricted to linear modus ponens and con�ned to single

occurrences as main connective in transfer constructors):

� `

t

� �� � � `

t

� ��

t

�

�� `

t

� �� �

In fact, ` (� �� �) �� ((� �� �) �� (� �� �)) is a tautology in linear logic.

Assuming that we restrict `

t

to applications of transitivity of linear implication, we can now collapse

the set of transfer constructors given in Section 3.3 above relating the source and target meaning

constructor sets corresponding to Usually Hans suggests a restaurant and Normalerweise schlägt

Hans ein Restaurant vor to the much more readable:

Trans =

(

8F;X; Y (F

�

; suggest(X;Y) ��

t

F

�

; vorschlagen(X;Y))

8F; P (F

�

; usually(P) ��

t

F

�

; normalerweise(P))

)

As before, this set of transfer constructors relates underspeci�ed representations (sets of source

and target meaning constructors) thus obviating the need for multiple (and in this case spurious)

transfer on disambiguated representations. Unless explicitly indicated, in the rest of the paper we

will always give transfer constructors in the compact, non-redundant form. Note that the compact

transfer constructors are still fully reversible: simply changing the direction of ��

t

in the set above

provides ambiguity preserving transfer from German into English.

6

3.6 Argument Switching and other Standard Transfer Problems

Before concentrating on problems of structural mismatches with head switching, we brie�y illustrate

how this transfer approach deals with more unproblematic types of lexical transfer. One of the basic

exercises in transfer is argument switching. A typical case is the translation of Germanmiÿlingen into

French râter, as in Das Photo ist Hans miÿlungen � Hans a râté la photo (Hans messed up/ruined

the photo), with the two f-structures

2

6

6

4

SUBJ

h

PRED photo

i

2

PRED miÿlingenh" OBJ2; " SUBJi

OBJ2

h

PRED hans

i

3

3

7

7

5

1

2

6

6

4

SUBJ

h

PRED hans

i

3

PRED râterh" SUBJ; " OBJi

OBJ

h

PRED photo

i

2

3

7

7

5

1

In the more redundant formalization of Section 3.3 the transfer constructor miÿlingen ��

t

râter

would have to rewrite the subj of miÿlingen into the obj of râter, and its secondary object obj2

into the subj of râter. In our more sparse formalization the transfer constructor miÿlingen ��

t

râter

reduces to:

8F;X; Y (F

�

; miÿlingen(X;Y) ��

t

F

�

; râter(X;Y))

From the set of instantiated meaning constructors and transfer constructors we derive the appro-

priate set of target meaning constructors:

8

>

<

>

:

(f

2

)

�

; photo

(f

3

)

�

; hans

8X8Y [((f

3

)

�

; X
 (f

2

)

�

; Y) �� (f

1

)

�

; miÿlingen(X;Y)]

9

>

=

>

;

[

n

miÿlingen ��

t

râter

o

`

t

8

>

<

>

:

1: (f

2

)

�

; photo

2: (f

3

)

�

; hans

3: 8X8Y [((f

3

)

�

; X
 (f

2

)

�

; Y) �� (f

1

)

�

;râter(X;Y)

9

>

=

>

;

The instantiated target meaning constructor (3.) correctly binds the meanings X and Y , which can

be seen by comparison with the non-instantiated source and target versions, to be used in analysis

and generation:

miÿlingen: 8X8Y [((" OBJ2)

�

; X
 (" SUBJ)

�

; Y) �� "

�

;miÿlingen(X;Y)]

râter : 8X8Y [((" SUBJ)

�

; X
 (" OBJ)

�

; Y) �� "

�

;râter(X;Y)]

In the compact formalization of transfer constructors the transfer of simple argument mismatches �

where an argument is syntactically realized by distinct grammatical relations in source and target

languages � goes in fact unnoticed. Since transfer constructors operate on instantiated meaning con-

structors, the argument bindings carried through in transfer are su�cient to allow for instantiation

of the appropriate grammatical functions in the target structure for generation.

The resource sensitivity of linear logic also fares well with another type of lexical transfer, exempli�ed

by the pair commit suicide and its French translation se suicider. Here the meaning of a transitive

support verb construction must be rewritten into the meaning of an intransitive verb. This is

captured by consuming the second argument of commit in the following transfer constructor:

8F;X; Y ((F OBJ)

�

; suicide
 F

�

; commit(X;Y)) ��

t

F

�

; se_suicider(X))

Just as in the fully structure preserving examples of Sections 3.1 and 3.3 the transfer constructors

for lexical argument mismatches considered here are fully reversible.

7

4 Structural Mismatches in Transfer

4.1 Head Switching with Transfer Constructors

The English translation of Hans schwimmt gerne is Hans likes swimming. These sentences are

associated with the following f-structures:

2

6

6

4

SUBJ

h

PRED hans

i

2

PRED schwimmenh" SUBJi

ADJN f

h

PRED gerne

i

3 g

3

7

7

5

1

2

6

6

6

6

4

SUBJ

h

PRED hans

i

2

PRED likeh" SUBJ; " XCOMPi

XCOMP

"

SUBJ

h

PRED hans

i

2

PRED swimh" SUBJi

#

1

3

7

7

7

7

5

3

Note that the German adverb gerne translates into a control verb construction like in English. The

f-structures associated with the German and English sentences show structural misalignment (head

switching): in the German case the adjunct f

3

is embedded inside the main f-structure f

1

with

schwimmenh" SUBJi as its governing PRED while in the English case the corresponding f-structure f

1

governed by swimh" SUBJi is located inside the top f-structure f

3

governed by likeh" SUBJ; " XCOMPi,

the translation of the adjunct gerne. Embedded head switching cases are problematic for the LFG

correspondence based transfer approach [7, 10]. Essentially the problem is that what used to be an

embedding f-structure in the source (in our example f

1

) turns out to be an embedded f-structure

in the target representation. If, in addition, the embedding f-structure f

1

in the source was itself

embedded inside another f-structure (say f

0

) in the source then head switching in translation may

destroy the link between its (i.e. f

1

's) translation and the translation of its embedding f-structure

(f

0

). From the f-structure associated with the German sentence we derive the set Source:

8

>

<

>

:

(f

2

)

�

; hans

8X [(f

2

)

�

; X �� (f

1

)

�

; schwimmen(X)]

8P [(f

1

)

�

; P �� (f

1

)

�

; gerne(P)]

9

>

=

>

;

` (f

1

)

�

; gerne(schwimmen(hans))

The meaning constructor for like

5

, to be used for independent analysis of the English sentence, is

like : 8X;P [((" SUBJ)

�

; X
 8Y ((" XCOMP SUBJ)

�

; Y �� (" XCOMP)

�

; P (Y))) ��

"

�

; like(X;P (X))]

and analysis of the English sentence yields the set Target :

8

>

<

>

:

(f

2

)

�

; hans

8X;P [((f

2

)

�

; X
 8Y ((f

2

)

�

; Y �� (f

1

)

�

; P (Y))) �� (f

3

)

�

; like(X;P (X))]

8X [(f

2

)

�

; X �� (f

1

)

�

; swim(X)]

9

>

=

>

;

` (f

3

)

�

; like(hans; swim(hans))

Note that in our transfer constructors we refer to f-structures that project �-structures (in fact we

have wide scope universal quanti�cation over such nodes). Hence if we are not careful we would

expect to get problems with embedded head switching cases here as well. �Pure� semantic repre-

sentations tend to avoid such problems since structural di�erences such as head switching would

5

This constructor was suggested to us by Mary Dalrymple.

8

be expected to be ironed out on the level of semantic representation [8, 4]. Meaning constructors,

however, relate syntactic and semantic representations. It is in this sense that they are not �pure�.

6

On the other hand, they naturally provide underspeci�ed semantic representations and the possi-

bility of ambiguity preserving transfer on such representations, an issue not addressed by earlier

approaches such as [8].

7

Since there are no left-common pre�xes in the meaning constructors for gerne and like, the transfer

constructor gerne ��

t

like consumes the entire meaning constructor for gerne and produces a full

meaning constructor for like:

8F [8P (F

�

; P �� F

�

; gerne(P))

��

t

8X;P ((F SUBJ)

�

; X
 8Y ((F XCOMP SUBJ)

�

; Y �� F

�

; P (Y)) �� F

�

; like(X;P (X)))]

Note crucially that the meaning constructor on the right-hand side of ��

t

rewrites a node F rather

than accessing a node F XCOMP to match P (Y). From the instantiated source meaning constructors

together with the transfer constructors (and since " SUBJ =" XCOMP SUBJ) we deduce

Source [

(

schwimmen ��

t

swim

gerne ��

t

like

)

`

t

8

>

<

>

:

1: (f

2

)

�

; hans

2: 8X [(f

2

)

�

; X �� (f

1

)

�

; swim(X)]

3: 8X;P [((f

2

)

�

; X
 8Y ((f

2

)

�

; Y �� (f

1

)

�

; P (Y))) �� (f

1

)

�

; like(X;P (X))]

9

>

=

>

;

`

(f

1

)

�

; like(hans; swim(hans))

as required. Observe, however, that (3.) above is not exactly like the original meaning constructor

for like employed in independent analysis of the target string Hans likes swimming (cf. p. 8 above).

The di�erence is that the constructor obtained through the transfer operation �rewrites� a single

node (f

1

)

�

rather than accessing a complement node (f

1

XCOMP)

�

to match against P (Y).

4.2 Embedded Head Switching: Take 1

Next, we consider a complex instance of embedded head switching:

Ede vermutet daÿ Hans gerne schwimmt ; vermuten(ede; gerne(schwimmen(hans)))

Ede suspects that Hans likes swimming ; suspect(ede; like(hans; swim(hans)))

The corresponding f-structures are:

2

6

6

6

6

6

6

6

4

SUBJ

h

PRED ede

i

2

PRED vermutenh" SUBJ; " COMPi

COMP

2

6

6

4

SUBJ

h

PRED hans

i

4

PRED schwimmenh" SUBJi

ADJN f

h

PRED gerne

i

5
g

3

7

7

5

3

3

7

7

7

7

7

7

7

5

1

2

6

6

6

6

6

6

6

6

6

4

SUBJ

h

PRED ede

i

2

PRED suspecth" SUBJ; " COMPi

COMP

2

6

6

6

6

4

SUBJ

h

PRED hans

i

4

PRED likeh" SUBJ; " XCOMPi

XCOMP

"

SUBJ

h

PRED hans

i

4

PRED swimh" SUBJi

#

5

3

7

7

7

7

5

3

3

7

7

7

7

7

7

7

7

7

5

1

6

Expressions in the meaning representation language in meaning constructors, though are.

7

The approach in [8] could, however, be combined with packed representation techniques to enable ambiguity

preserving transfer.

9

The following meaning constructors are associated with vermuten and suspect :

vermuten : 8X;P [((" SUBJ)

�

; X
 (" COMP)

�

; P) �� "

�

; vermuten(X;P)]

suspect : 8X;P [((" SUBJ)

�

; X
 (" COMP)

�

; P) �� "

�

; suspect(X;P)]

The corresponding transfer constructor is simply:

8F;X; P [F

�

; vermuten(X;P) ��

t

F

�

; suspect(X;P)]

The semantic projection of the f-structure associated with the German sentence induces the following

set of instantiated meaning constructors:

Source =

8

>

>

>

>

>

<

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; vermuten(X;P)]

3: (f

4

)

�

; hans

4: 8X[(f

4

)

�

; X �� (f

3

)

�

; schwimmen(X)]

5: 8P [(f

3

)

�

; P �� (f

3

)

�

; gerne(P)]

9

>

>

>

>

>

=

>

>

>

>

>

;

Source ` (f

1

)

�

; vermuten(ede; gerne(schwimmen(hans)))

Furthermore, transfer yields

Source [

8

>

<

>

:

vermuten ��

t

suspect

schwimmen ��

t

swim

gerne ��

t

like

9

>

=

>

;

`

t

8

>

>

>

>

>

<

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; suspect(X;P)]

3: (f

4

)

�

; hans

4: 8X[(f

4

)

�

; X �� (f

3

)

�

; swim(X)]

5: 8X;P [((f

4

)

�

; X
 8Y ((f

4

)

�

; Y �� (f

3

)

�

; P (Y))) �� (f

3

)

�

; like(X;P (X))]

9

>

>

>

>

>

=

>

>

>

>

>

;

`

(f

1

)

�

; suspect(ede; like(hans; swim(hans)))

as required. This set of target meaning constructors obtained via transfer is close to the set of

meaning constructors obtained via independent analysis of the taget string. They di�er, however,

with respect to the constructor for like. The constructor obtained through transfer (5. above) rewrites

node (f

3

)

�

rather than accessing a separate (f

3

XCOMP)

�

projection to match P (Y).

4.3 Embedded Head Switching: Take 2

Let us brie�y take stock: the linear logic based transfer approach provides ambiguity preserving

transfer on underspeci�ed representations and an elegant solution for embedded head switching

cases. As it stands, however, for head switching cases it will not deliver exactly the set of target

constructors obtained by independent analysis of the target string. This may cause problems for

10

target language generation from underspeci�ed representations (sets of target meaning construc-

tors). Recall that the linear logic based transfer solution to embedded head switching relies on node

rewriting in a resource sensitive formalism. In order to enable generation as outlined in Section

3.2, transfer should deliver exactly the set of meaning constructors as would be obtained by inde-

pendent analysis of the target string. Alternatively, generation would have to proceed from fully

disambiguated target meaning assignments. At the moment, generation from disambiguated target

meaning assignments is not available to us yet and even if it were, it would defeat the idea of

ambiguity preserving transfer.

However, it is possible to adapt a variant of a solution to embedded head switching in

correspondence-based syntactic transfer approaches [10] to our present ambiguity preserving transfer

scenario.

The basic idea is that in order to de�ne transfer from a �at f-structure into an f-structure con�g-

uration involving an additional XCOMP layer, the transfer rule that maps the f-structure node f

3

under the COMP arc of vermuten in the German f-structure (cf. p. 9) into the target structure has

to foresee that � in case of head switching � the arcs of this node have to map to a lower position

in the target, namely the node under the path comp xcomp. One way to �foresee� such a possible

deeper embedding is to �push down� the predicate-argument nucleus of verbs (here schwimmen)

one or more levels down, via functional uncertainty over xcomp. This is de�ned below, where we

rede�ne the transfer constructor schwimmen ��

t

swim:

8F;X (F

�

; schwimmen(X) ��

t

(F XCOMP*)

�

; swim(X))

We also rede�ne the transfer constructor gerne ��

t

like: we now rely on the fact that the predicate

argument structure and the corresponding semantic projector associated with the translation of

the proposition in the scope of the adjunct in the source will be �pushed down�, in the target

representation in terms of functional uncertainty (see schwimmen ��

t

swim above). The new

constructor gerne ��

t

like is:

8F [8P (F

�

; P �� F

�

; gerne(P))

��

t

8X;P [((F SUBJ)

�

; X
 8Y ((F XCOMP SUBJ)

�

; Y �� (F XCOMP)

�

; P (Y)))

�� F

�

; like(X;P (X))]

This transfer constructor consumes the entire source meaning constructor for gerne and produces

the proper target meaning constructor for likes (as used in independent target analysis). From the

set of source meaning constructors Source together with the set of transfer constructors Trans �

this time with the updated schwimmen ��

t

swim and gerne ��

t

like � we derive

Source [

8

>

<

>

:

vermuten ��

t

suspect

schwimmen ��

t

swim

gerne ��

t

like

9

>

=

>

;

`

t

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; suspect(X;P)]

3: (f

4

)

�

; hans

4: 8X[(f

4

)

�

; X �� (f

3

XCOMP�)

�

; swim(X)]

5: 8X;P [((f

4

)

�

; X
 8Y ((f

4

)

�

; Y �� (f

3

XCOMP)

�

; P (Y)))

�� (f

3

)

�

; like(X;P (X))]

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

`

11

(f

1

)

�

; suspect(ede; like(hans; swim(hans)))

where XCOMP* is resolved to XCOMP. Now the set of target meaning constructors derived via

transfer does indeed correspond to the set of target meaning constructors obtained by independent

analysis of the target string. In particular, the f-structure node instantiations of the target meaning

constructor ensure that (i) the subject of like is the same as the subject of swim (sharing is also

required by the control equation (" SUBJ) = (" XCOMP SUBJ) in the lexical entry for like) and (ii)

the meaning assignment produced by swim is available and retrieved at the XCOMP node required

by like.

It may be presumed that the resulting set of target meaning constructors may not always correspond

exactly to the set obtained from independent analysis of the target string: if the embedded target

predicate requires complements other than the shared SUBJ would it not be the case that those

complements be located and found at the �wrong� level of the target f-structure? Fortunately, this

is not the case. Consider Ede vermutet daÿ Hans gerne Chomsky liest and its translation Ede

suspects that Hans likes reading Chomsky. The corresponding f-structures are

2

6

6

6

6

6

6

4

SUBJ

�

PRED ede

�

2

PRED vermutenh" SUBJ; " COMPi

COMP

2

6

6

4

SUBJ

�

PRED hans

�

4

PRED lesenh" SUBJ; " OBJi

OBJ

�

PRED chomsky

�

6

ADJN f

�

PRED gerne

�

5
g

3

7

7

5

3

3

7

7

7

7

7

7

5

1

2

6

6

6

6

6

6

6

6

4

SUBJ

�

PRED ede

�

2

PRED suspecth" SUBJ; " COMPi

COMP

2

6

6

6

6

4

SUBJ

�

PRED hans

�

4

PRED likeh" SUBJ; " XCOMPi

XCOMP

2

4

SUBJ

�

PRED hans

�

4

PRED readh" SUBJ; " OBJi

OBJ

�

PRED chomsky

�

6

3

5

5

3

7

7

7

7

5

3

3

7

7

7

7

7

7

7

7

5

1

The source and target meaning constructors for simple transitive verbs are the standard

lesen : 8X;Y [((" SUBJ)

�

; X
 (" OBJ)

�

; Y) �� "

�

; lesen(X;Y)]

read : 8X;Y [((" SUBJ)

�

; X
 (" OBJ)

�

; Y) �� "

�

; read(X;Y)]

With these the set of instantiated source meaning constructors is

Source =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; vermuten(X;P)]

3: (f

4

)

�

; hans

4: 8X;Y [((f

4

)

�

; X
 (f

6

)

�

; Y) �� (f

3

)

�

; lesen(X;Y)]

5: 8P [(f

3

)

�

; P �� (f

3

)

�

; gerne(P)]

6: (f

6

)

�

; chomsky

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

Source ` (f

1

)

�

; vermuten(ede; gerne(lesen(hans; chomsky)))

The transfer constructor lesen ��

t

read is

8F;X; Y [F

�

; lesen(X;Y) ��

t

(F XCOMP*)

�

; read(X;Y)]

We derive

Source [

8

>

<

>

:

vermuten ��

t

suspect

lesen ��

t

read

gerne ��

t

like

9

>

=

>

;

`

t

12

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; suspect(X;P)]

3: (f

4

)

�

; hans

4: 8X;Y [((f

4

)

�

; X
 (f

6

)

�

; Y) �� (f

3

XCOMP�)

�

; read(X;Y)]

5: 8X;P [((f

4

)

�

; X
 8Y ((f

4

)

�

; Y �� (f

3

XCOMP)

�

; P (Y)))

�� (f

3

)

�

; like(X;P (X))]

6: (f

6

)

�

; chomsky

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

`

(f

1

)

�

; suspect(ede; like(hans; read(hans; chomsky)))

The set of target constructors obtained via transfer again corresponds to the set obtained by inde-

pendent analysis of the target string.

Take 2 is made reversible as follows: �rst, swap the left- and right-hand sides of ��

t

like ��

t

gerne :

8F [8X;P ((F SUBJ)

�

; X
 8Y ((F XCOMP SUBJ)

�

; Y �� (F XCOMP)

�

; P (Y))

�� F

�

; like(X;P (X)))

��

t

8P (F

�

; P �� F

�

; gerne(P))]

second, rede�ne transfer constructors for main verbs, such that they admit functional uncertainty

over xcomp to both sides of ��

t

:

8F;X; Y [(F XCOMP*)

�

; read(X;Y) ��

t

(F XCOMP*)

�

; lesen(X;Y)]

Taking the second f-structure of p.12 as input for transfer, we obtain the set of meaning constructors:

Source =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; suspect(X;P)]

3: (f

4

)

�

; hans

4: 8X;Y [((f

4

)

�

; X
 (f

6

)

�

; Y) �� (f

5

)

�

; read(X;Y)]

5: 8X;P [((f

4

)

�

; X
 8Y ((f

4

)

�

; Y �� (f

3

XCOMP)

�

; P (Y)))

�� (f

3

)

�

; like(X;P (X))]

6: (f

6

)

�

; chomsky

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

When applied to this set, the inverted transfer constructors derive the set of target meaning con-

structors required to generate the German f-structure. In this case the functional uncertainty over

xcomp will be resolved to � to satisfy completeness and coherence conditions.

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1: (f

2

)

�

; ede

2: 8X;P [((f

2

)

�

; X
 (f

3

)

�

; P) �� (f

1

)

�

; vermuten(X;P)]

3: (f

4

)

�

; hans

4: 8X;Y [((f

4

)

�

; X
 (f

6

)

�

; Y) �� (f

3

XCOMP�)

�

; lesen(X;Y)]

5: 8P [(f

3

)

�

; P �� (f

3

)

�

; gerne(P)]

6: (f

6

)

�

; chomsky

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

13

5 Conclusion

In the present paper we have outlined an approach to semantic transfer based on linear logic transfer

constructors operating on sets of linear logic meaning constructors. Transfer on sets of meaning

constructors o�ers the advantage of ambiguity preserving transfer and in many cases obviates the

need for multiple transfer on disambiguations. Linear logic transfer constructors blend well with

the linear logic based semantic components of current LFG architectures [1]. Furthermore, the

resource consciousness of transfer constructors allows a close modelling and provides a formalization

of semantic transfer as developed and implemented in [3], a fact �rst noticed in [5].

Transfer as outlined in the present paper is reversible, modular and lexicalized. Lexical entries have

corresponding and independently stated transfer constructors retrieved during transfer. A set of

source meaning constructors and their corresponding transfer constructors together de�ne transfer.

Transfer as outlined in the present paper comes with a well-formedness check on the resulting Target

set representation. Target is well-formed i� it admits of target meaning assignments established via

linear logic deductions consuming all target meaning constructors: Target ` f

�

;M .

Meaning constructors crucially refer to semantic projections induced by f-structure nodes to con-

strain composition possibilites during linear logic meaning assignment derivations. Ideally, transfer

on sets of meaning constructors instantiated to f-structure nodes produces a target set of meaning

constructors with f-structure node instantiations directly useful for target string generation. Since

transfer constructors operate on instantiated meaning constructors, di�erences in syntactic func-

tion do not have to be transferred explicitly in many cases. Here, instantiation of the appropriate

syntactic functions can be left to generation as long as the target meaning constructors match the

meaning constructors used in analysis.

For instances of structural mismatches, in particular the notoriously di�cult case of head switching,

we have presented a way (Take 2) to de�ne transfer constructors which produce a set of target

meaning constructors with f-structure designators structurally corresponding to those obtained by

independent analysis of the target sentence.

Meaning constructors e�ectively encode a syntax�semantics interface. Transfer as outlined in the

present paper transfers syntax�semantics interfaces. Further research is directed at ambiguity pre-

serving linear logic based transfer on �pure� semantic representations.

References

[1] M. Dalrymple, J. Lamping, F.C.N. Pereira, and V. Saraswat. A deductive account of quanti�cation in

lfg. In M. Kanazawa, C. Pinon, and H. de Swart, editors, Quanti�ers, Deduction and Context, pages

33�57. CSLI Publications, No. 57, 1996.

[2] M. Dalrymple, J. Lamping, and V. Saraswat. Lfg semantics via constraints. In Proceedings of the 6th

Meeting of the European ACL (EACL), Utrecht, 1993.

[3] M. Dorna and M.C. Emele. Semantic-based Transfer. In Proceedings of the 16th International Conference

on Computational Linguistics (Coling'96), Copenhagen, Denmark, 1996.

[4] M. Dorna, A. Frank, J. van Genabith and M.C. Emele. Syntactic and Semantic Transfer with F-

Structures. In Proceedings of the 17th International Conference on Computational Linguistics (Col-

ing'98), Montréal, Canada, 1998.

[5] T. Fujinami. Linear Logic for Translation with Ambiguity. ms., IMS, Stuttgart, Germany, 1996.

14

[6] T. Fujinami. A Decidable Logic for Transforming DRSs in Context. In Proceedings of the 11th Amsterdam

Colloquium, pages 127�132, Amsterdam, Holland, 1997. ILLC, Department of Philosphy, University of

Amsterdam.

[7] R. Kaplan, K. Netter, J. Wedekind, and A. Zaenen. Translation by Structural Correspondences. In Pro-

ceedings of the 4th Conference of the European Chapter of the Association for Computational Linguistics

(EACL'89), pages 272�281, Manchester, UK, 1989.

[8] R. Kaplan and J. Wedekind. Restriction and Correspondence-based Translation. In Proceedings of the

6th Conference of the European Chapter of the Association for Computational Linguistics (EACL'93),

pages 193�202, Utrecht, The Netherlands, 1993.

[9] D. Kohl. Generation from Under- and Overspeci�ed Structures. In Proceedings of the 14th International

Conference on Computational Linguistics (Coling'92), pages 686�692, Nantes, France, 1992.

[10] L. Sadler and H.S. Thompson. Structural Non-correspondence in Translation. In Proceedings of the 5th

Conference of the European Chapter of the Association for Computational Linguistics (EACL'91), pages

293�298, Berlin, Germany, 1991.

[11] A.S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes, number 29, CSLI Publications, Stanford

University, 1992.

[12] J. van Genabith and R. Crouch. How to Glue a Donkey to an f-Structure or Porting a Dynamic Meaning

Representation Language into LFG's Linear Logic Based Glue Language Semantics. In International

Workshop for Computational Semantics, Tilburg, Proceedings, pages 52�65, 1997.

[13] J. Wedekind. Generation as Structure Driven Derivation. In Proceedings of the 12th International

Conference on Computational Linguistics (Coling'88), pages 732�737, Budapest, Hungary, 1988.

15

