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Twenty-Five Years of Finite-State
Morphology
LAURI KARTTUNEN AND KENNETH R. BEESLEY

8.1 Introduction
Twenty-five years ago in the early 1980s, morphological analysis of natural
language was a challenge to computational linguists. Simple cut-and-paste
programs could be and were written to analyze strings in particular languages,
but there was no general language-independent method available. Further-
more, cut-and-paste programs for analysis were not reversible, they could not
be used to generate words. Generative phonologists of that time described
morphological alternations by means of ordered rewrite rules, but it was not
understood how such rules could be used for analysis.

This was the situation in the spring of 1981 when Kimmo Koskenniemi
came to a conference on parsing that Lauri Karttunen had organized at the
University of Texas at Austin. Also at the same conference were two Xerox
researchers from Palo Alto, Ronald M. Kaplan and Martin Kay. The four
Ks discovered that all of them were interested and had been working on the
problem of morphological analysis. Koskenniemi went on to Palo Alto to visit
Kay and Kaplan at Xerox PARC.

This was the beginning of Two-Level Morphology, the first general model
in the history of computational linguistics for the analysis and generation of
morphologically complex languages. The language-specific components, the
lexicon and the rules, were combined with a runtime engine applicable to all
languages.
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8.2 The Origins
Traditional phonological grammars, formalized by Chomsky and Halle
(1968), consisted of an ordered sequence of REWRITE RULES that converted
abstract phonological representations into surface forms through a series
of intermediate representations. Such rewrite rules have the general form
α → β / γ _ δ where α, β, γ, and δ can be arbitrarily complex strings or
feature-matrices. The rule is read “α is rewritten as β between γ and δ”. In
mathematical linguistics (Partee et al. 1993), such rules are called CONTEXT-
SENSITIVE REWRITE RULES, and they are more powerful than regular ex-
pressions or context-free rewrite rules.

In 1972, C. Douglas Johnson published his dissertation, Formal Aspects of
Phonological Description, wherein he showed that phonological rewrite rules
are actually much less powerful than the notation suggests. Johnson observed
that while the same context-sensitive rule could be applied several times re-
cursively to its own output, phonologists have always assumed implicitly that
the site of application moves to the right or to the left in the string after each
application. For example, if the rule α → β / γ _ δ is used to rewrite the
string γαδ as γβδ, any subsequent application of the same rule must leave
the β part unchanged, affecting only γ or δ. Johnson demonstrated that the
effect of this constraint is that the pairs of inputs and outputs produced by
a phonological rewrite rule can be modeled by a finite-state transducer. This
result was largely overlooked at the time and was rediscovered by Ronald
M. Kaplan and Martin Kay around 1980 . Putting things into a more algebraic
perspective than Johnson, Kaplan and Kay showed that phonological rewrite
rules describe REGULAR RELATIONS. By definition, a regular relation can be
represented by a finite-state transducer.

Johnson was already aware of an important mathematical property of
finite-state transducers established by Schützenberger (1961): there exists, for
any pair of transducers applied sequentially, an equivalent single transducer.
Any cascade of rule transducers can in principle be composed into a single
transducer that maps lexical forms directly into the corresponding surface
forms, and vice versa, without any intermediate representations.

These theoretical insights did not immediately lead to practical results. The
development of a compiler for rewrite rules turned out to be a very complex
task. It became clear that building a compiler required as a first step a com-
plete implementation of basic finite-state operations such as union, intersec-
tion, complementation, and composition. Developing a complete finite-state
calculus was a challenge in itself on the computers that were available at the
time.

Another reason for the slow progress may have been that there were per-
sistent doubts about the practicality of the approach for morphological ANAL-
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YSIS. Traditional phonological rewrite rules describe the correspondence be-
tween lexical forms and surface forms as a one-directional, sequential map-
ping from lexical forms to surface forms. Even if it was possible to model
the GENERATION of surface forms efficiently by means of finite-state trans-
ducers, it was not evident that it would lead to an efficient analysis procedure
going in the reverse direction, from surface forms to lexical forms.

Let us consider a simple illustration of the problem with two sequentially
applied rewrite rules, N -> m / _ p and p -> m / m _. The cor-
responding transducers map the lexical form kaNpatunambiguously to kam-
mat, with kampatas the intermediate representation. However if we apply the
same transducers in the other direction to the input kammat, we get the three
results shown in Figure 1.

kampatkaNpat

kammat

kampat kammat

Surface Strings

N −> m / _ p

p −> m / m _

Lexical Strings

Intermediate Strings

kammat

FIGURE 1 Deterministic Generation, Nondeterministic Analysis

This asymmetry is an inherent property of the generative approach to
phonological description. If all the rules are deterministic and obligatory and
if the order of the rules is fixed, each lexical form generates only one surface
form. But a surface form can typically be generated in more than one way,
and the number of possible analyses grows with the number of rules that are
involved. Some of the analyses may turn out to be invalid because the pu-
tative lexical forms, say kammatand kampatin this case, might not exist in
the language. But in order to look them up in the lexicon, the system must
first complete the analysis. Depending on the number of rules involved, a sur-
face form could easily have dozens of potential lexical forms, even an infinite
number in the case of certain deletion rules.

Although the generation problem had been solved by Johnson, Kaplan and
Kay, at least in principle, the problem of efficient morphological analysis in
the Chomsky-Halle paradigm was still seen as a formidable challenge. As
counterintuitive as it was, it appeared that analysis was computationally a
much more difficult task than generation. Composing all the rule transducers
into a single one would not solve the “overanalysis” problem. Because the
resulting single transducer is equivalent to the original cascade, the ambiguity
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remains.
The solution to the overanalysis problem should have been obvious: to for-

malize the lexicon itself as a finite state transducer and compose the lexicon
with the rules. In this way, all the spurious ambiguities produced by the rules
are eliminated at compile time. The resulting single transducer contains only
lexical forms that actually exist in the language. When this idea first surfaced
in Karttunen et al. (1992), it was not in connection with traditional rewrite
rules but with an entirely different finite-state formalism that had been intro-
duced in the meantime, called TWO-LEVEL RULES (Koskenniemi 1983).

8.3 Two-level Morphology
In the spring of 1981 when Kimmo Koskenniemi came to the USA for a visit,
he learned about Kaplan and Kay’s finite-state discovery.1 PARC had begun
work on the finite-state algorithms, but they would prove to be many years
in the making. Koskenniemi was not convinced that efficient morphologi-
cal analysis would ever be practical with generative rules, even if they were
compiled into finite-state transducers. Some other way to use finite automata
might be more efficient.

Back in Finland, Koskenniemi invented a new way to describe phonolog-
ical alternations in finite-state terms. Instead of cascaded rules with interme-
diate stages and the computational problems they seemed to lead to, rules
could be thought of as statements that directly constrain the surface realiza-
tion of lexical strings. The rules would not be applied sequentially but in
parallel. Each rule would constrain a certain lexical/surface correspondence
and the environment in which the correspondence was allowed, required, or
prohibited. For his 1983 dissertation, Koskenniemi constructed an ingenious
implementation of his constraint-based model that did not depend on a rule
compiler, composition or any other finite-state algorithm, and he called it
TWO-LEVEL MORPHOLOGY. Two-level morphology is based on three ideas:

. Rules are symbol-to-symbol constraints that are applied in parallel, not
sequentially like rewrite rules.. The constraints can refer to the lexical context, to the surface context, or
to both contexts at the same time.. Lexical lookup and morphological analysis are performed in tandem.

To illustrate the first two principles we can turn back to the kaNpatexam-
ple again. A two-level description of the lexical-surface relation is sketched
in Figure 2.
As the lines indicate, each symbol in the lexical string kaNpatis paired with
its realization in the surface string kammat. Two of the symbol pairs in Fig-

1They weren’t then aware of Johnson’s 1972 publication.
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FIGURE 2 Example of Two-Level Constraints

ure 2 are constrained by the context marked by the associated box. The N:m
pair is restricted to the environment having an immediately following p on
the lexical side. In fact the constraint is tighter. In this context, all other
possible realizations of a lexical N are prohibited. Similarly, the p:m pair
requires the preceding surface m, and no other realization of p is allowed
here. The two constraints are independent of each other. Acting in parallel,
they have the same effect as the cascade of the two rewrite rules in Figure 1.
In Koskenniemi’s notation, these rules are written as N:m <=> _ p: and
p:m <=> :m _ , where <=> is an operator that combines a context re-
striction with the prohibition of any other realization for the lexical symbol
of the pair. The colon in the right context of first rule, p:, indicates that it
refers to a lexical symbol; the colon in the left context of the second rule, :m,
indicates a surface symbol.

Two-level rules may refer to both sides of the context at the same time.
The y∼ie alternation in English plural nouns could be described by two rules:
one realizes y as i in front of an epenthetic e; the other inserts an epenthetic
ebetween a lexical consonant-y sequence and a morpheme boundary (+) that
is followed by an s. Figure 3 illustrates the y:i and 0:econstraints.

p

p
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s e

0s p + s

s e

0 s

s0

+y

s0ip i

y

FIGURE 3 A Two-Level View of y∼ie Alternation in English

Note that the e in Figure 3 is paired with a 0 (= zero) on the lexical level. In
two-level rules, zero is a symbol like any other; it can be used to constrain the
realization of other symbols, as in y:i <=> _ 0:e. In fact, all the other
rules must “know” where zeros may occur. Zeros are treated as epsilons only
when two-level rules are applied to strings.

Like rewrite rules, two-level rules describe regular relations; but there is an
important difference. Because the zeros in two-level rules are ordinary sym-
bols, a two-level rule represents an EQUAL-LENGTH RELATION. This has an
important consequence: Although regular relations in general are not closed
under intersection, equal length relations have that property. When a set of
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two-level transducers are applied in parallel, the apply routine in fact simu-
lates the intersection of the rule automata and composes the input string with
the virtual constraint network.

Applying the rules in parallel does not in itself solve the overanalysis prob-
lem discussed in the previous section. The two constraints sketched above
allow kammatto be analyzed as kaNpat, kampat, or kammat. However, the
problem becomes manageable when there are no intermediate levels of anal-
ysis. In Koskenniemi’s 1983 system, the lexicon was represented as a forest
of tries (= letter trees), tied together by continuation-class links from leaves
of one tree to roots of another tree or trees.2 Lexical lookup and the analysis
of the surface form are performed in tandem. In order to arrive at the point
shown in Figure 4, the analyzer has traversed a branch in the lexicon that

Rule
N:m

Rule
p:m

ma tak m

p
k a

N

FIGURE 4 Following a Path in the Lexicon

contains the lexical string kaN. At this point, it only considers symbol pairs
whose lexical side matches one of the outgoing arcs of the current state. It
does not pursue analyses that have no matching lexical path.

Koskenniemi’s two-level morphology was the first practical general model
in the history of computational linguistics for the analysis of morphologi-
cally complex languages. The language-specific components, the rules and
the lexicon, were combined with a universal runtime engine applicable to all
languages.

8.4 A Two-Level Rule Compiler
In his dissertation, Koskenniemi introduced a formalism for two-level rules.
The semantics of two-level rules was well-defined but there was no rule com-
piler available at the time. Koskenniemi and other early practitioners of two-
level morphology constructed their rule automata by hand. This is tedious in
the extreme and very difficult for all but very simple rules.

Although two-level rules are formally quite different from the rewrite rules
studied by Kaplan and Kay, the methods that had been developed for com-

2The TEXFIN analyzer developed at the University of Texas at Austin (Karttunen et al. 1981)
had the same lexicon architecture.
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piling rewrite rules were applicable to two-level rules as well. In both for-
malisms, the most difficult case is a rule where the symbol that is replaced or
constrained appears also in the context part of the rule. This problem Kaplan
and Kay had already solved by an ingenious technique for introducing and
then eliminating auxiliary symbols to mark context boundaries. Another fun-
damental insight they had was the encoding of context restrictions in terms
of double negation. For example, a constraint such as “p must be followed
by q” can be expressed as “it is not the case that something ending in p
is not followed by something starting with q.” In Koskenniemi’s formalism,
p => _ q.

In the summer of 1985, when Koskenniemi was a visitor at Stanford,
Kaplan and Koskenniemi worked out the basic compilation algorithm for
two-level rules. The first two-level rule compiler was written in InterLisp by
Koskenniemi and Karttunen in 1985-87 using Kaplan’s implementation of the
finite-state calculus (Koskenniemi 1986, Karttunen et al. 1987). The current
C-version of the compiler, called TWOLC, was written at PARC in 1991-92
(Karttunen and Beesley 1992).3

Although the basic compilation problem was solved quickly, building a
practical compiler for two-level rules took a long time. The TWOLC com-
piler includes sophisticated techniques for checking and resolving conflicts
between rules whenever possible. Without these features, large rule systems
would have been impossible to construct and debug. If two constraints are in
conflict, some lexical forms have no valid surface form. This is a common
problem and often difficult to remedy even if the compiler is able to detect
the situation and to pinpoint the cause.

8.5 Two-Level Implementations
Koskenniemi’s Pascal implementation was quickly followed by others. The
most influential of them was the KIMMO system by Lauri Karttunen and his
students at the University of Texas (Karttunen 1983, Gajek et al. 1983). This
Lisp project inspired many copies and variations, including those by Beesley
(1989, 1990). A free C implementation of classic Two-Level Morphol-
ogy, called PC-KIMMO, from the Summer Institute of Linguistics (Antworth
1990), became a popular tool.

In Europe, two-level morphological analyzers became a standard com-

3The landmark 1994 article by Kaplan and Kay on the mathematical foundations of finite-
state linguistics defines the basic compilation algorithm for phonological rewrite rules and for
Koskenniemi’s two-level rules. The article appeared years after the work on the two-level com-
piler was completed and just before the implementation of the so-called REPLACE RULES in the
current PARC/XRCE regular expression compiler. The article is accurate on the former topic, but
the algorithm for replace rules (Karttunen 1995, 1996, Kempe and Karttunen 1996) differs in
many details from the compilation of rewrite rules as described by Kaplan and Kay.
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ponent in several large systems for natural language processing such as the
British Alvey project (Black et al. 1987, Ritchie et al. 1987, 1992), SRI’s CLE

Core Language Engine (Carter 1995), the ALEP Natural Language Engineer-
ing Platform (Pulman 1991) and the MULTEXT project (Armstrong 1996).
ALEP and MULTEXT were funded by the European Commission. 4

Some of these systems were based on simplified two-level rules, the so-
called PARTITION-BASED formalism Ruessink (1989), which was claimed to
be easier for linguists to learn than the original Koskenniemi notation. But
none of these systems had a finite-state rule compiler.5 Another difference
was that morphological parsing could be constrained by feature unification.
Because the rules were interpreted at runtime and because of the unifica-
tion overhead, these systems were not efficient, and two-level morphology
acquired, undeservedly, a reputation for being slow.

At XRCE and Inxight, the TWOLC compiler was used in the 1990s to de-
velop comprehensive morphological analyzer for numerous languages. An-
other utility, called LEXC (Karttunen 1993b), made it possible to combine a
finite-state lexicon with a set of two-level rules into a single LEXICAL TRANS-
DUCER using a special “intersecting composition” algorithm that simulates
the intersection of the rules while simultaneously composing the virtual rule
transducer with the lexicon. A lexical transducer can be considered the ulti-
mate two-level model of a language as it encodes compactly:

. all the LEMMAS (canonical lexical forms with morphological tags). all the inflected surface forms. all the mappings between lexical forms and surface forms.

In the course of this work it became evident that lexical transducers are easier
to construct with sequentially applied replace rules than with two-level rules.
Large systems of two-level rules are notoriously difficult to debug. Most de-
velopers of morphological analyzers at XRCE and at companies such as Inx-
ight have over the years switched to the sequential model and the XFST tool
that includes a compiler for replace rules. The ordering of replace rules seems
to be less of a problem than the mental discipline required to avoid rule con-
flicts in a two-level system, even if the compiler automatically resolves most
of them. From a formal point of view there is no substantive difference; a
cascade of rewrite rules and a set of parallel two-level constraints are just two
different ways to decompose a complex regular relation into a set of simpler
relations that are easier to understand and manipulate.

4The MULTEXT morphology tool (Petitpierre and Russel 1995) built at ISSCO is available at
http://packages.debian.org/stable/misc/mmorph.html

5A compilation algorithm has been developed for the partition-based formalism Grimley-
Evans et al. (1996), but to our knowledge there is no publicly available implementation.
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The Beesley and Karttunen (2003) book Finite State Morphologyde-
scribes the XFST and LEXC tools and offers a lot of practical advice on tech-
niques for constructing lexical transducers.6

8.6 Reflections
Although the two-level approach to morphological analysis was quickly ac-
cepted as a useful practical method, the linguistic insight behind it was not
picked up by mainstream linguists. The idea of rules as parallel constraints
between a lexical symbol and its surface counterpart was not taken seriously
at the time outside the circle of computational linguists. Many arguments had
been advanced in the literature to show that phonological alternations could
not be described or explained adequately without sequential rewrite rules. It
went largely unnoticed that two-level rules could have the same effect as or-
dered rewrite rules because two-level rules allow the realization of a lexical
symbol to be constrained either by the lexical side or by the surface side. The
standard arguments for rule ordering were based on the a priori assumption
that a rule could refer only to the input context (Karttunen 1993a).

But the world has changed. Current phonologists, writing in the frame-
work of OT (Optimality Theory), are sharply critical of the “serialist” tradition
of ordered rewrite rules that Johnson, Kaplan and Kay wanted to formalize
(Prince and Smolensky 1993, Kager 1999, McCarthy 2002).7 In a nutshell,
OT is a two-level theory with rankedparallel constraints. Many types of op-
timality constraints can be represented trivially as two-level rules. In contrast
to Koskenniemi’s “hard” constraints, optimality constraints are “soft” and vi-
olable. There are of course many other differences. Most importantly, OT con-
straints are meant to be universal. The fact that two-level rules can describe
orthographic idiosyncrasies such as the y∼ie alternation in English with no
appeal to universal principles is a minus rather than a plus. It makes the ap-
proach uninteresting from the OT point of view.8

Nevertheless, from the OT perspective, two-level rules have some inter-
esting properties. They are symbol-to-symbol constraints, not string-to-string
relations like general rewrite rules. Two-level rules enable the linguist to re-
fer to the input and the output context in the same constraint. The notion of
FAITHFULNESS (= no change) can be expressed straight-forwardly. It is pos-
sible to formulate constraints that constrain directly the surface level. These
ideas were ten years ahead of their time in 1983.

6The book includes a CD that contains TWOLC, XFST, LEXC and other finite-state tools. See
also http://www.fsmbook.com. The documentation for TWOLC, missing from the book,
is included on the CD.

7The term SERIAL, a pejorative term in an OT context, refers to sequential rule application.
8Finite-state approaches to Optimality Theory have been explored in several recent articles

(Eisner 1997, Frank and Satta 1998, Karttunen 1998).
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It is interesting to observe that computational linguists and “paper-and-
pencil linguists” have historically been out of sync in their approach to
phonology and morphology. When computational linguists implemented par-
allel two-level models in the 1980s, paper-and-pencil linguists were still stuck
in the serialist Chomsky-Halle paradigm. When most of the computational
morphologists working with the Xerox tools embraced the sequential model
as the more practical approach in the mid 1990s, a two-level theory took over
paper-and-pencil linguistics by a storm in the guise of OT.

If one views the mapping from lexical forms to surface forms as a regular
relation, the choice between different ways of decomposing it has practical
consequences but it is not a deep theoretical issue for computational linguists.
No brand of finite-state morphology has ever been promoted as a theory about
language. Its practitioners have always been focused on the practical task of
representing the morphological aspects of a language in a form that supports
efficient analysis and generation. They have been remarkably successful in
that task.

Paper-and-pencil morphologists in general are not interested in creat-
ing complete descriptions for particular languages. They design formalisms
for expressing generalizations about morphological phenomena commonly
found in all natural languages. But if it turns out, as in the case of REALIZA-
TIONAL MORPHOLOGY (Stump 2001), that the theory can be implemented
with finite-state tools (Karttunen 2003), perhaps the phenomena are not as
complex as the linguist has imagined.
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