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Foreword

The advent of the modern computer in the nineteen-fifties immediately
suggested a new research challenge: to seek ways of programming these
versatile machines which would make them behave as much like intel-
ligent human beings as possible. After fifty years or so, this quest has
produced some intriguing results, but until now progress has been dis-
appointingly slow. This book is a welcome and encouraging sign that
things may at last be about to change.

To be sure, what might be called the purely logical approach has
recently produced some noteworthy successes. Consider the following
two examples:

On October 10, 1996, a rigorous proof of the Robbins Conjecture
was found by William McCune’s theorem proving program EQP at the
Argonne National Laboratory. This problem had been unsolved since
the mid-nineteen-thirties.

On May 11, 1997, the (then) world chess champion Garry Kasparov
lost a six game match against the computer program Deep Blue with a
score of 2.5 to 3.5: two wins for Deep Blue, one win for Kasparov and
three draws.

Both these programs, however, use quite non-human methods. Nei-
ther of them is at all based on how the mind of the human expert
actually works. It is in fact very difficult to find out what the natu-
ral intellectual processes of expert humans really are. To program a
computer to solve the kind of problems that such experts can solve,
the purely logical approach has hitherto been found more effective than
the heuristic approach: to invent systematic algorithms for solving the
problems rather than trying to discover, and then to imitate, the rele-
vant human skills. Not that the heuristic approach has been ignored. On
the contrary, heuristic problem-solving and the programming of “expert
system” have been prominent computational methodologies in Artificial
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viii / MATHEMATICAL REASONING WITH DIAGRAMS

Intelligence and Operations Research from the beginning. But in math-
ematical theorem proving, at least, the purely logical approach has far
outpaced the heuristic approach.

The fact is that the latter has been severely hampered by a short-
age of insights into mathematical cognition and ratiocination. Professor
Alan Bundy’s group at the University of Edinburgh has for some time
now been patiently and insightfully seeking to remedy this shortage.
Mateja Jamnik developed the ideas described in this book as a member
of Bundy’s group, and the book beautifully illustrates what the group
has been doing.

What is novel about Mateja Jamnik’s work is that she has found an
explanation of at least part of the mystery of how humans are able to
“see” the truth of certain mathematical propositions merely by contem-
plating appropriate diagrams and constructions. This ability to “see” is
one of the really fundamental components of the human mathematical
cognitive repertoire. As the late great mathematician G. H. Hardy put
it: in the last analysis there is no such thing as “proof” — all a mathe-
matician really does is observe what is there. To convince others of what
he observes to be the case all he can do is point and say: do you see?
Mateja Jamnik’s program DIAMOND “sees”, for example, as we do, that
a b x b array of dots is also a nest of 5 “ells” containing respectively 1,
3,5, 7, and 9 dots, and that there is nothing special about this special
case. It and we can see that the case of 5 is but one instance of the
general pattern whereby, for any n, an n x n array of dots is also a nest
of n “ells” containing respectively 1,3,5,7,...,2n — 1 dots. In this way
it and we can directly see, as a kind of mathematical sense datum, the
truth of the mathematical theorem that the number n? is the sum of
the first n odd numbers. This act of seeing is analyzed in the program
as a set of alternative decompositions of a given square array; we can
see it either as a row of columns: or as a column of rows, or as a nest
of frames, or as a mest of ells, or as an array of subsquares, and so on
and on. Each of these perceptions is the same as seeing the truth of a
corresponding mathematical theorem.

It is as though the program Deep Blue had been given some of the
very same abilities to “see” the right chess move as Kasparov — literally
to see what he sees when he looks at the board. But we don’t know what
it is that Kasparov sees.

Impressive though some of its achievements have been (such as that
of EQP mentioned above), the purely logical approach to mathematical
theorem proving is limited in scope and scientifically unedifying. The
present book is an encouraging demonstration that its scope can be
much widened, and its explanatory power expanded, by a fearless and
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patient exploration of the details of actual mathematical cognition. The
logical and the heuristic approaches are beginning to come together in a
most fruitful way. Mateja Jamnik is among the pioneers of a fresh new
approach to an old problem.

I welcome the elegant and surprising insights of this book as ushering
in a new generation of discoveries in the understanding of mathematical
reasoning.

J. A. ROBINSON
Professor Emeritus, Syracuse University
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Preface

This book started as my doctoral dissertation (Jamnik 1999) under the
supervision of Alan Bundy and Ian Green at the University of Edin-
burgh, in what was then known as the Department of Artificial Intelli-
gence, and had by the end of my PhD studies become the Division of
Informatics.

This book is written for a mathematically minded audience. The
intention is to present an exploration into the subset of the world of
mathematics which can be solved with the use of pictures. Some fa-
miliarity with logic is required to understand the entire contents of the
book. However, readers with little or no knowledge of logic should be
able to safely omit parts of three particularly technical chapters: most of
Chapter 8 and Appendix B, and parts of Chapter 4. Chapter 8 and Ap-
pendix B, in particular, are not essential to understand the general line
of argument taken in the book. The specialist audience that the book is
intended to attract is the automated reasoning community. The general
audience that it is intended to attract is a community of scientists in
artificial intelligence, computer scientists, mathematicians, philosophers,
psychologists, cognitive scientists, teachers of mathematics and anybody
interested in mathematical recreations.

I have attempted to make this book self-contained, and have included
a comprehensive survey of other related work (see Chapter 2). In order
to explain any possibly unfamiliar or unconventional use of terminology,
I have included a Glossary of such terms at the end of the book.

Parts of the work described in this book have appeared in press in
the past, in particular in Jamnik et al. 1999, Jamnik et al. 1998, Jamnik
et al. 1997b and Jamnik et al. 1997a.

xi
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Introduction

n®=1+3+5+---+(2n—-1)

— NICOMACHUS OF GERASA (circa A.D.100)
in NELSEN’s Proofs Without Words

This book is about mathematical reasoning with diagrams. Human
mathematicians often informally use diagrams when proving theorems.
Diagrams seem to convey information which is easily understood by hu-
mans. For example, it requires only basic secondary school knowledge of
mathematics to realize that the diagram above is a proof of a theorem
about the sum of odd natural numbers. We call such proofs diagram-
matic proofs. In this book we present an investigation into formalizing
and mechanizing diagrammatic reasoning, and a concrete result of this
investigation, a semi—automatic formal proof system, called DIAMOND
(Diagrammatic Reasoning and Deduction), which facilitates a user to
prove theorems of arithmetic using diagrams.

1.1 Motivation

It is an interesting property of diagrams that helps us to “see” and
understand so much just by looking at a simple diagram. Given some
basic mathematical training and familiarity with spatial manipulations,
we not only know what theorem the diagram represents, but we also

“

1
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2 / MATHEMATICAL REASONING WITH DIAGRAMS

understand the proof of the theorem represented by the diagram and
believe it is correct.

Is it possible to simulate and formalize this sort of diagrammatic
reasoning on machines? Or is it a kind of intuitive reasoning particular
to humans that mere machines are incapable of 7 Roger Penrose claims
that it is not possible to automate certain diagrammatic proofs.! We are
taking his position as a challenge and are trying to capture the kind of
diagrammatic reasoning that Penrose is talking about so that we will be
able to emulate some simple examples of it on a computer. Our primary
motivation is not to discover diagrammatic proofs, but to study them in
order to understand them better and be able to formalize them.

The importance of diagrams in many domains of reasoning has been
extensively discussed by Larkin and Simon (1987), who claim that “a
diagram is (sometimes) worth ten thousand words”. The advantage of
a diagram is that it concisely stores information, explicitly represents
the relations among the elements of the diagram, and it supports a lot
of perceptual inferences that are very easy for humans. Diagrams have
been extensively used in the history of mathematics to aid informal
mathematical reasoning. The use of diagrams in explanations of theorems
and proofs of geometry dates back at least to Ancient Greece, and the
time of Aristotle and Euclid. Thus it is surprising perhaps that more
recently, starting with the invention of formal axiomatic logic in the sense
of Frege, Russell and Hilbert, diagrams have been denied a formal role
in theorem proving. It is generally thought by logicians that diagrams
have no accepted syntax nor semantic theory which would make them
rigorous enough to be used in formal proofs. Hence, in the past century,
only symbolic proofs of some logic have been considered to be formal,
and proofs that use diagrams have been considered informal. Only very
recently, in the last two decades, have there been efforts to fill this gap
and investigate whether and how diagrams can be used in formal proofs
(for instance, see Funt 1980, Sowa 1984, Kaufman 1991, Barker-Plummer
and Bailin 1992, Barwise and Etchemendy 1994, Shin 1995, Hammer
1995, Stenning and Oberlander 1995).

Alongside the revival of research on formal aspects of using diagrams,
investigations have also been carried out in other directions with different
perspectives on the use of diagrams. These can be characterized into two
groups of research perspectives, namely computational and cognitive
perspectives.

From a computational perspective, Lindsay (1998) devises a compu-

IRoger Penrose presented his position in the lecture at the International Centre
for Mathematical Sciences in Edinburgh, in celebration of the 50th anniversary of
UNESCO on 8 November, 1995. His point of view is elaborated in Penrose 1994a.
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tational model of human reasoning with diagrams, and claims that dia-
grams are sometimes more efficient for solving problems than some logi-
cal machinery. Glasgow and Papadias (1992) make a distinction between
visual and spatial reasoning: visual reasoning is concerned about what
a diagram looks like, whereas spatial reasoning deals more with where
a diagram is located relative to other diagrams. Stenning and Ober-
lander (1995) introduce computational models for interpreting Euler’s
circles (Euler 1795). They also carry out a comparative analysis of the
expressiveness of diagrammatic and symbolic representations in Sten-
ning and Oberlander 1992. One of the aspects of the computational
perspective is also the issue of knowledge representation. A lot of work
on various kinds of representations has been carried out by Sloman and
Hayes (see Sloman 1971, Hayes 1974, Sloman 1996). Related to this work
and to Glasgow’s work mentioned above is an unresolved debate on the
characterization of diagrammatic (or graphical or visual) and symbolic
(or sentential) representations (e.g., see Narayanan 1992, Olivier 1996,
Blackwell 1997, Anderson 1997, Anderson et al. 2000, Anderson et al.
2001). Since there is no consensus on the definition of each type of repre-
sentation, it seems that researchers adopt their own definitions suitable
for their work.

From a cognitive perspective, Johnson-Laird (1983), and Hegarty
and Just (1993) argue that humans, at least in some cases, use diagrams
in their mental models of a situation. Mental imagery has been studied
by Pylyshyn (1981), Pinker (1985) and Kosslyn (1993), amongst others.
Pylyshyn is particularly critical of mental imagery and questions claims
that humans use diagrams in cognition — we may think we do, he says,
but there is no conclusive evidence that the brain uses diagrammatic
representations; we may even be using symbolic logical representations
(Pylyshyn 1973).

Our work contributes to research on formal and computational as-
pects of the use of diagrams, especially in automated reasoning systems.
Automated reasoning systems have their roots back in the fifties when
the first programs were written that could automatically prove simple
theorems of propositional logic. As a result of growing interest in the
research on automated reasoning we have today many sophisticated sys-
tems such as the theorem prover of Boyer and Moore (see Boyer and
Moore 1990) or Isabelle (see Paulson 1989) in which one can prove com-
plex theorems of mathematics.

However, during all these years, perhaps due to the influence of ax-
iomatic logic, the majority of researchers have concentrated their efforts
on improving the exact, rigorous and formal proof searching algorithms
for a particular formal system of logic. In their efforts they have neglected
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4 / MATHEMATICAL REASONING WITH DIAGRAMS

the beauty and power of informal, intuitive reasoning of human mathe-
maticians. There are exceptions including work by Gelernter (1963) and
Bundy (1983). Bundy argued that in order to progress in computational
logic, we need to go further and consider these informal aspects of human
reasoning (Bundy 1983).

Our work supports this argument. We investigate informal human
reasoning with diagrams and use it as an inspiration for formalizing
diagrammatic reasoning so that it can be carried out on machines. We
build a meta-theory in which diagrammatic proofs are formal. The issues
which are addressed in this process include formality, informality and
the rigor of diagrams in proofs. We hope to gain an insight into the
understanding of at least a simple subset of diagrammatic proofs.

1.2 Aims

The concise storage of information, the intuitive representation of re-
lations amongst elements of diagrams, and the support of perceptual
inferences that humans seem to find easy to understand, are the char-
acteristics of diagrams that we exploit in this book. We make the claim
that most diagrams are “intuitive and easy to understand” informally,
and support it only by anecdotal evidence from both, our own experience
and that of some other people.? As mentioned before, there are at least
two approaches to investigating diagrammatic reasoning corresponding
to the perspectives on the diagrams research. One approach is to clarify
and model the processes that are going on in humans when they use
diagrams in mathematical reasoning — this can be described as a cogni-
tive approach to investigating diagrams. Another approach is to design
and implement a system which uses diagrammatic reasoning — this can
be described as a formal and computational approach to investigating
diagrams. In this book we take the second approach — our aim is to for-
malize diagrammatic reasoning and to show that diagrams can be used
for proofs in a formal system.

Diagrams are concrete in nature. Unless we use abstraction devices
to represent the generality of a diagram, the diagram is a particular

3

2 An experimental study into quantifying “intuitiveness” of diagrams and their use
in mathematical proofs, and examining whether people find them “easier” to under-
stand than symbolic logical proofs would be an interesting cognitive investigation.

3Note that in this book the word abstraction has two meanings due to a lack
of two different appropriate words. First, an abstraction refers to some abstraction
device, such as ellipsis (ellipsis is a term used for the “...” notation). Second, it refers
to the abstraction mechanism which constructs a general proof from examples of a
proof. The use of both meanings will always be clear from the context. Definitions of
some terminology specific to this book, to which the reader is advised to pay special
attention, can be found in Glossary on page 185.
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instance of the general class to which it belongs — it is a typical repre-
sentative instance for this classes. Abstraction devices are tools for rep-
resenting the continuation of some pattern and are often used in objects
to represent their generality. Examples of abstraction devices include el-
lipsis, or the summation of numbers sign Y, or labelling of objects with
variables. The use of abstraction devices in diagrams seems to be prob-
lematic, because it is difficult to keep track of them while manipulating a
diagram. It is not clear if humans manipulate such abstraction devices
or they reason with concrete objects and infer the generality in some
other way. We aim to capture diagrammatic proofs which do not use
abstraction devices on a computer. We use the concreteness property of
diagrams and look into how theorems of mathematics can be expressed
as diagrams for some concrete values, i.e., ground instantiations of a
theorem.

The initial diagrams which represent (part of) a theorem are ma-
nipulated using some geometric operations which deconstruct diagrams
in different ways, but preserve certain properties. For instance, if a dia-
gram represents a natural number, then the collection of diagrams which
is a result of applying some operation to the initial diagram represents
the same natural number. This is true, because the operations are de-
fined so that they preserve the natural number that the diagrams rep-
resent. The sequence of geometric operations on a diagram represents
the inference steps of a diagrammatic proof. This is a novel approach to
proving arithmetic theorems, which to the best of our knowledge, has
not been undertaken before in other research on the automation of dia-
grammatic reasoning (see the overview of the past research in this field
in Chapter 2). Rather than using symbolic formulae of some logic to
prove a mathematical theorem, we use manipulations of diagrams. Our
intuition is that the fact that the operations are visual seems to make
them intuitively easier to understand and use for humans. No specialized
knowledge of logic is required, just some familiarity with spatial manipu-
lations. A concrete proof instance is called an example-proof, and consists
of a sequence of operations applied to the concrete diagram. The set of
all available diagrams and operations defines the proof search space.

Since manipulating abstraction devices to infer the generality of a
diagram, or a theorem and its proof that the diagram conveys, can be
problematic and can lead to ambiguous results, we need to find an al-
ternative mechanism to capture a general proof of a theorem at hand.
We do so by extracting a general pattern from several proof instances,
and capture it in a recursive program, called a schematic proof. This
recursive program allows us to construct a general diagrammatic proof
for the universally quantified theorem at hand.
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6 / MATHEMATICAL REASONING WITH DIAGRAMS

Finally, a general schematic proof which is inferred from the instances
has to be shown to be correct. It seems that humans sometimes omit this
step all together. Human machinery for extracting a general argument
is usually convincing enough to reassure them that the general argument
is correct, e.g., consider the proof at the beginning of this chapter. In
an automated reasoning system, we need to show the correctness of the
induced general argument. This confirms that a diagrammatic schematic
proof is indeed a correct formal proof of a theorem. We use the construc-
tive w-rule, an existing technique in logic (Sundholm 1983), to justify the
step from schematic proofs to theoremhood. Baker et al (1992) investi-
gated this rule in the domain of arithmetic theorems. The constructive
w-rule allows us to capture infinitary concepts in a finite way using the
diagrams. In this book we aim to investigate the entire process of con-
structing examples, constructing a general proof, and showing that the
general proof is correct. Together, all three stages constitute our formal-
ization of diagrammatic proofs.

Having formalized the use of diagrams in proofs, it is no longer true
that diagrammatic proofs can only be informal proofs. It is now inter-
esting to investigate the relation between symbolic and diagrammatic
proofs. Usually, theorems are symbolically proved with the use of infer-
ence steps which often do not convey an intuitive notion of truthfulness
to humans in quite as easy way as diagrams do. The inference steps of a
formal symbolic (as opposed to diagrammatic) proof are statements that
follow the rules of some logic. The reason we trust that they are correct
is that the logic has been previously proved to be sound. Following and
applying the rules of such a logic guarantees that there is no mistake
in the proof. We hope to have such a guarantee in our proof system,
and moreover, to gain an insight into the intuitive understanding, the
correctness and such properties of our diagrammatic proof. Ultimately,
the entire process of diagrammatically proving theorems will illuminate
the issues of formality, rigor, truthfulness and power of diagrammatic
proofs, and perhaps more generally, of any sort of proof.

1.3 Some Original Contributions

There are three main contributions made by our work. First, our research
introduces a novel approach to automated reasoning about mathematical
theorems. There has been no work done on the automation of systems
which use diagrams in such a direct way as our system DIAMOND, and
the manipulations of diagrams lead to a correct proof of a theorem.
All of the traditional formal rules of some logic which are expressed as

4Some anecdotal evidence will be given later in §4.5 and §4.6.
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symbolic formulae, are completely replaced by geometric operations on
diagrams. Thus, all the inference rules of DIAMOND are diagrammatic.

Second, the work presented in this book shows that diagrams can
be used for formal proofs. Moreover, formal proofs are not just aided by
diagrams, but can be constructed using only diagrams and operations on
them. Although some people have claimed that diagrams can be given a
rigorous function in reasoning and some people have disputed it, we are
the first to show how it can be done in a particular subfield of mathe-
matics so that formal diagrammatic rather than symbolic logical proofs
can be generated. We formalize diagrammatic reasoning in a particular
domain of mathematics (see Chapter 3), and implement a reasoning sys-
tem DIAMOND which is capable of diagrammatically proving a number
of theorems (Chapter 9). These proofs are guaranteed to be correct.

Finally, we show how the constructive w-rule can be used to reason
with particular instances of diagrams rather than with abstraction de-
vices in general diagrams. We demonstrate how this technique can be
used to capture general diagrammatic proofs (Chapter 4).

These three contributions are embodied in an implementation of a
diagrammatic proof system called DIAMOND which automates diagram-
matic reasoning and applies it to problem solving in mathematics. Dia-
MOND is a body of Standard ML code which interactively, via a graphical
user interface, allows a user to construct diagrammatic proofs.

The construction of diagrammatic proofs in DIAMOND consists of
three steps.

e The user interactively constructs example-proofs by choosing ini-
tial diagrams which represent the theorem (Chapter 5), and then
applies diagrammatic operations (Chapter 6) to build these exam-
ple-proofs.

e DIAMOND then automatically constructs a general pattern from
these instances of proofs, and captures it in a recursive program,
called a schematic proof. (Chapter 7)

e The final step is to check if the schematic proof is correct. Dia-
MOND automatically verifies a given schematic proof. (Chapter 8)

The main limitation of DIAMOND is that its expressiveness of dia-
grammatic rules is restricted. There are rules which cannot be expressed
as manipulations of diagrams with the current repertoire. Indeed, there
are theorems which consist of terms that cannot be expressed as dia-
grams. To overcome these weaknesses DIAMOND needs to be extended
with some additional types of concrete diagrams and operations on them.
Finally, DIAMOND is a proof checker, it is not a discoverer. The user of
D1aAMOND provides most of the intelligence by constructing example-
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8 / MATHEMATICAL REASONING WITH DIAGRAMS

proofs. Therefore, in order to enable DIAMOND to find proofs for itself,
we could extend DIAMOND to a fully automated theorem prover which
discovers diagrammatic proofs (Chapter 10) — this remains an interesting
direction for future work.

There is a potential for the ideas we present in this book to be used
for exploring human intuitive reasoning in a novel way. We think that
humans find diagrammatic proofs easier to understand and more com-
pelling than their symbolic logical counterparts. We have only anecdotal
evidence to support our belief. However, some comparative psycholog-
ical validity experimental study could be carried out. We propose that
such a study could use DIAMOND to provide an architecture where the
diagrammatic proofs can be constructed and explored in order to gain
an insight into the understanding of the proof.

1.4 Layout of the Rest of This Book

Here is the organization and the layout of the rest of this book. It should
give the readers an overall picture of the topics discussed in this book,
and point them to a specific subject of interest.

In Chapter 2, The History of Diagrammatic Systems, we describe sev-
eral other diagrammatic systems which have been implemented in the
past. They all use diagrams for reasoning in some way: to store informa-
tion, to reject false facts, to infer new facts, etc. We concentrate in more
detail on Gelernter’s Geometry Machine, Koedinger and Anderson’s DC,
Barker-Plummer and Bailin’s Grover, Barwise and Etchemendy’s Hy-
perproof, Lindsay’s Archimedes, Furnas’ Bitpict, and Anderson and Mc-
Cartney’s IDR, because these seem to be closest to our work with respect
to the use of diagrams for problem solving.

In Chapter 3, Diagrammatic Theorems and the Problem Domain,
we present some examples of theorems which can be represented and
proved in a diagrammatic way. Diagrams are often perceived as an in-
formal rather than formal aid to reasoning, so we discuss their use in
proofs, and the general issues about the formal and informal role of di-
agrams in proofs. We then present some examples of theorems that can
be proved diagrammatically by showing the diagrams and the manipu-
lations on them. Based on these examples, a taxonomy of diagrammatic
proofs is introduced. Another factor which is considered in our choice
of the problem domain is the use of abstraction devices (e.g., ellipsis) in
diagrams. Finally, the taxonomy helps us choose the domain of problems
that we subsequently concentrate on in this book.

In Chapter 4, The Constructive w-rule and Schematic Proofs, we
give a way of capturing diagrammatic proofs without the need to resort
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to diagrams containing abstraction devices. The mathematical basis for
capturing the generality of the proof is in the use of the constructive
w-rule in schematic proofs, which is explained in detail.

In Chapter 5, Designing a Diagrammatic Reasoning System, we de-
scribe the DIAMOND system which is an embodiment of the ideas pre-
sented in this book. DIAMOND is a diagrammatic proof checker, which
interactively proves theorems of mathematics by applying geometric op-
erations to diagrams. In this chapter some of the design issues for the
implementation of this proof system are discussed. These include: the
architecture of DIAMOND, the basic notion of a diagrammatic proof,
the construction of example-proofs, the representation of diagrams, and
D1AMOND’s graphical interface.

In Chapter 6, Diagrammatic Operations, we present the geometric
operations, which are available in DIAMOND. These operations capture
the inference steps of a diagrammatic proof. We define them here and
give some examples.

In Chapter 7, The Construction of Schematic Proofs, the notion of a
diagrammatic proof is presented. A diagrammatic proof is captured in a
recursive program, referred to as a schematic proof. When a schematic
proof is run, it generates a proof of P(n) for each input value of number
n. In this chapter we describe how general schematic proofs are auto-
matically constructed from example-proofs, and how they are formalized
in DIAMOND.

In Chapter 8, The Verification of Schematic Proofs, we present a
method which enables us to prove the correctness of schematic proofs
for particular theorems. The mechanism for construction of a schematic
proof is an inductive inference algorithm. It is a machine’s attempt to
make an “intelligent” guess of what the general proof is. This “guess”
needs to be verified and shown to be correct. In this chapter we define
a way of carrying out the verification, in particular, we devise a theory
of diagrams where we can check the correctness of a schematic proof.

In Chapter 9, DIAMOND in Action, we present a running example of
the construction, formalization and verification of a diagrammatic proof
in DIAMOND. We also comment on the general results in DIAMOND such
as the range and depth of theorems it can interactively prove, and the
limitations of DIAMOND.

In Chapter 10, Complete Automation, we propose some possible fu-
ture directions for the work discussed in this book. In particular, we
give an indication of how to make DIAMOND a completely automated
theorem prover capable of discovering diagrammatic proofs. Finally, we
make some concluding remarks.

In Appendix A, More Examples of Diagrammatic Theorems, we give
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additional examples of theorems and their diagrammatic proofs, which
are analyzed to motivate the taxonomy of diagrammatic theorems used
to choose the problem domain discussed in this book.

In Appendix B, The w-Rule, we define and motivate the use of the
w-rule in logic. The problems with its use in automation lead us to the
use of its constructive version (explained in Chapter 4).

In Glossary we give some definitions of technical terms used in this
book that might prove useful. Notice that in the literature, the terms
induction, abstraction and generalization are often used interchangeably
for the same concept. We have three different notions for these terms, and
hence define them here precisely. We urge the reader to pay particular
attention to the use of these terms.
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